{"title":"Sustainable treatment of boron from oilfield produced water for optimum recovery using zirconium chloride oxo-precipitation","authors":"","doi":"10.1016/j.scp.2024.101762","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the recovery of boron from oilfield-produced water employing the chemical oxo-precipitation method. Zirconium chloride was used to recover boron as a sustainable approach. The study aimed to optimize the parameters to achieve the highest possible boron recovery. It also sought to investigate the impact of operating parameters, including pH, time, oxidizing agent, and dosage of the precipitant, on boron recovery. The optimal operating conditions were optimized through response surface methodology (RSM). A comparative study was conducted with barium chloride (chemical oxo-precipitation) and calcium hydroxide (conventional precipitation). The results indicated that the highest boron recovery was achieved at 97% by utilizing chemical oxo-precipitation with zirconium chloride. Meanwhile, barium chloride and calcium hydroxide recovered boron at 89% and 88%, respectively. The precipitates were characterized by Fourier transform infrared (FTIR), x-ray fluorescence (XRF), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDX). The XRF and EDX characterization analysis confirmed the highest boron recovery at 97% with zirconium chloride. SEM showed that zirconium chloride precipitated visible amorphous insoluble solids. The chemical-oxo-precipitation procedure outperforms barium chloride and calcium hydroxide precipitation. The zirconium chloride oxo-precipitation method was proved to be a greener solution for boron recovery.</p></div>","PeriodicalId":22138,"journal":{"name":"Sustainable Chemistry and Pharmacy","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry and Pharmacy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352554124003371","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the recovery of boron from oilfield-produced water employing the chemical oxo-precipitation method. Zirconium chloride was used to recover boron as a sustainable approach. The study aimed to optimize the parameters to achieve the highest possible boron recovery. It also sought to investigate the impact of operating parameters, including pH, time, oxidizing agent, and dosage of the precipitant, on boron recovery. The optimal operating conditions were optimized through response surface methodology (RSM). A comparative study was conducted with barium chloride (chemical oxo-precipitation) and calcium hydroxide (conventional precipitation). The results indicated that the highest boron recovery was achieved at 97% by utilizing chemical oxo-precipitation with zirconium chloride. Meanwhile, barium chloride and calcium hydroxide recovered boron at 89% and 88%, respectively. The precipitates were characterized by Fourier transform infrared (FTIR), x-ray fluorescence (XRF), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDX). The XRF and EDX characterization analysis confirmed the highest boron recovery at 97% with zirconium chloride. SEM showed that zirconium chloride precipitated visible amorphous insoluble solids. The chemical-oxo-precipitation procedure outperforms barium chloride and calcium hydroxide precipitation. The zirconium chloride oxo-precipitation method was proved to be a greener solution for boron recovery.
期刊介绍:
Sustainable Chemistry and Pharmacy publishes research that is related to chemistry, pharmacy and sustainability science in a forward oriented manner. It provides a unique forum for the publication of innovative research on the intersection and overlap of chemistry and pharmacy on the one hand and sustainability on the other hand. This includes contributions related to increasing sustainability of chemistry and pharmaceutical science and industries itself as well as their products in relation to the contribution of these to sustainability itself. As an interdisciplinary and transdisciplinary journal it addresses all sustainability related issues along the life cycle of chemical and pharmaceutical products form resource related topics until the end of life of products. This includes not only natural science based approaches and issues but also from humanities, social science and economics as far as they are dealing with sustainability related to chemistry and pharmacy. Sustainable Chemistry and Pharmacy aims at bridging between disciplines as well as developing and developed countries.