{"title":"On the restricted order of asymptotic bases","authors":"Jin-Hui Fang, Ying Cheng","doi":"10.1016/j.disc.2024.114260","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>N</mi></math></span> be the set of all positive integers. For a set <em>A</em> of positive integers, let <span><math><mi>A</mi><mo>∼</mo><mi>N</mi></math></span> denote that <em>A</em> contains all but finitely many positive integers. For an integer <span><math><mi>h</mi><mo>⩾</mo><mn>2</mn></math></span>, define <span><math><mi>h</mi><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>∈</mo><mi>A</mi><mo>}</mo></math></span> and <span><math><mi>h</mi><mo>×</mo><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>∈</mo><mi>A</mi><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for <span><math><mi>i</mi><mo>≠</mo><mi>j</mi><mo>}</mo></math></span>. In 2023, Chen and Yu [Discrete Math. 346 (2023), Paper No. 113388.] proved that, there exists a set <em>B</em> of positive integers such that: <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>≁</mo><mi>N</mi></math></span>, and <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>⋃</mo><mo>(</mo><mn>3</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>. In this paper, we construct a <em>somewhat dense</em> set <em>B</em> satisfying the above properties. That is, there exists a set <em>B</em> of positive integers such that: <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mspace></mspace><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mspace></mspace><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>≁</mo><mi>N</mi></math></span>, and <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>⋃</mo><mo>(</mo><mn>3</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114260"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003911/pdfft?md5=aacfc54f27829de05568c6d3ed5aa0a2&pid=1-s2.0-S0012365X24003911-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003911","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the set of all positive integers. For a set A of positive integers, let denote that A contains all but finitely many positive integers. For an integer , define and for . In 2023, Chen and Yu [Discrete Math. 346 (2023), Paper No. 113388.] proved that, there exists a set B of positive integers such that: , , , and . In this paper, we construct a somewhat dense set B satisfying the above properties. That is, there exists a set B of positive integers such that: , , , , and .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.