Boij-Söderberg conjectures for differential modules

IF 0.8 2区 数学 Q2 MATHEMATICS
Maya Banks
{"title":"Boij-Söderberg conjectures for differential modules","authors":"Maya Banks","doi":"10.1016/j.jalgebra.2024.08.025","DOIUrl":null,"url":null,"abstract":"<div><p>Boij-Söderberg theory gives a combinatorial description of the set of Betti tables belonging to finite length modules over the polynomial ring <span><math><mi>S</mi><mo>=</mo><mi>k</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>. We posit that a similar combinatorial description can be given for analogous numerical invariants of <em>graded differential S-modules</em>, which are natural generalizations of chain complexes. We prove several results that lend evidence in support of this conjecture, including a categorical pairing between the derived categories of graded differential <em>S</em>-modules and coherent sheaves on <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> and a proof of the conjecture in the case where <span><math><mi>S</mi><mo>=</mo><mi>k</mi><mo>[</mo><mi>t</mi><mo>]</mo></math></span>.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021869324004836/pdfft?md5=9ddb8d758d9e4041c890ffa8ca30c4c1&pid=1-s2.0-S0021869324004836-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004836","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Boij-Söderberg theory gives a combinatorial description of the set of Betti tables belonging to finite length modules over the polynomial ring S=k[x1,,xn]. We posit that a similar combinatorial description can be given for analogous numerical invariants of graded differential S-modules, which are natural generalizations of chain complexes. We prove several results that lend evidence in support of this conjecture, including a categorical pairing between the derived categories of graded differential S-modules and coherent sheaves on Pn1 and a proof of the conjecture in the case where S=k[t].

微分模块的 Boij-Söderberg 猜想
Boij-Söderberg 理论给出了属于多项式环 S=k[x1,...,xn]上有限长度模块的贝蒂表集合的组合描述。我们认为,对于分级微分 S 模块的类似数值不变式,也可以给出类似的组合描述。我们证明了支持这一猜想的几个结果,包括梯度微分 S 模块派生类与 Pn-1 上相干剪切之间的分类配对,以及 S=k[t] 情况下的猜想证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信