Recent advancement in LaFeO3-mediated systems towards photocatalytic and photoelectrocatalytic hydrogen evolution reaction: A comprehensive review

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL
Anshumika Mishra, Newmoon Priyadarshini, Sriram Mansingh, Kulamani Parida
{"title":"Recent advancement in LaFeO3-mediated systems towards photocatalytic and photoelectrocatalytic hydrogen evolution reaction: A comprehensive review","authors":"Anshumika Mishra,&nbsp;Newmoon Priyadarshini,&nbsp;Sriram Mansingh,&nbsp;Kulamani Parida","doi":"10.1016/j.cis.2024.103300","DOIUrl":null,"url":null,"abstract":"<div><p>The present disrupted scenario of the world calls for urgent attention to the need for renewable resources as an energy source for harnessing and feeding uninterrupted power supply to mankind. Amidst this, Photocatalysis (PC) and Photoelectrocatalysis (PEC) are some of the most budding methods of exploiting solar energy. LaFeO<sub>3</sub>-based systems are eligible for PC/PEC Hydrogen (H<sub>2</sub>) generation, incorporating the process of water splitting, etc. It would be fair to mention that the above methods can mimic the natural process of photosynthesis. This review comprises an encyclopedia of recent advancements in LaFeO<sub>3</sub> and modified systems towards sustainable Photocatalytic and Photoelectrocatalytic Hydrogen Evolution Reactions (HER). Besides the challenges, the review presents a clear and brief idea for the scientific research community on paving the future in upscaling and industrializing the LaFeO<sub>3</sub>-mediated green fuel (H2) generation to meet global energy needs.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103300"},"PeriodicalIF":15.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624002239","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present disrupted scenario of the world calls for urgent attention to the need for renewable resources as an energy source for harnessing and feeding uninterrupted power supply to mankind. Amidst this, Photocatalysis (PC) and Photoelectrocatalysis (PEC) are some of the most budding methods of exploiting solar energy. LaFeO3-based systems are eligible for PC/PEC Hydrogen (H2) generation, incorporating the process of water splitting, etc. It would be fair to mention that the above methods can mimic the natural process of photosynthesis. This review comprises an encyclopedia of recent advancements in LaFeO3 and modified systems towards sustainable Photocatalytic and Photoelectrocatalytic Hydrogen Evolution Reactions (HER). Besides the challenges, the review presents a clear and brief idea for the scientific research community on paving the future in upscaling and industrializing the LaFeO3-mediated green fuel (H2) generation to meet global energy needs.

Abstract Image

以 LaFeO3 为介质的光催化和光电催化氢气进化反应系统的最新进展:全面综述
当今世界的混乱局面要求人们迫切关注利用可再生资源作为能源的必要性,并为人类提供不间断的电力供应。在这种情况下,光催化(PC)和光电催化(PEC)是一些最新兴的利用太阳能的方法。基于 LaFeO3 的系统可用于 PC/PEC 氢气(H2)的生成,并结合水的分裂过程等。值得一提的是,上述方法可以模仿自然界的光合作用过程。本综述包含了有关 LaFeO3 和改性系统在实现可持续光催化和光电催化氢气进化反应(HER)方面最新进展的百科全书。除了面临的挑战之外,这篇综述还为科研界提供了一个清晰而简要的思路,即如何在未来将氧化钴(LaFeO3)介导的绿色燃料(H2)生成技术升级并产业化,以满足全球能源需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信