{"title":"Locally universal C⁎-algebras with computable presentations","authors":"Alec Fox , Isaac Goldbring , Bradd Hart","doi":"10.1016/j.jfa.2024.110652","DOIUrl":null,"url":null,"abstract":"<div><p>The Kirchberg Embedding Problem (KEP) asks if every <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra embeds into an ultrapower of the Cuntz algebra <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Motivated by the recent refutation of the Connes Embedding Problem, we establish two computability-theoretic consequences of a positive solution to KEP. Both of our results follow from the a priori weaker assumption that there exists a locally universal <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra with a computable presentation.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003409","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Kirchberg Embedding Problem (KEP) asks if every -algebra embeds into an ultrapower of the Cuntz algebra . Motivated by the recent refutation of the Connes Embedding Problem, we establish two computability-theoretic consequences of a positive solution to KEP. Both of our results follow from the a priori weaker assumption that there exists a locally universal -algebra with a computable presentation.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis