On the coupling between finite elements and integral representation for linear elastic waves scattering problems: Analysis and simulation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Rania Rais , Frédérique Le Louër
{"title":"On the coupling between finite elements and integral representation for linear elastic waves scattering problems: Analysis and simulation","authors":"Rania Rais ,&nbsp;Frédérique Le Louër","doi":"10.1016/j.camwa.2024.08.033","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we demonstrate the applicability of an exact truncation method for the solution of waves scattering problems in unbounded media, known as the Jami-Lenoir method, to linear elasticity. Our approach avoids the usual splitting of waves as the sum of longitudinal and transversal waves in the analysis and in the numerical modeling of elastodynamic waves scattering problems. The exact absorbing condition imposed on the computational boundary gathers the outgoing behavior of scattered waves given by their Green's integral representation formula with a modified Kupradze radiation condition that ensures uniqueness results and improve the system's conditioning. The truncation boundary can even be closely located from the obstacle with a distance of a few element lengths. Numerical experiments show the accuracy of the Jami-Lenoir approach and the efficiency of the Schwarz preconditioner for the solution of the exterior Neumann problem with a Krylov iterative solver.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004000","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we demonstrate the applicability of an exact truncation method for the solution of waves scattering problems in unbounded media, known as the Jami-Lenoir method, to linear elasticity. Our approach avoids the usual splitting of waves as the sum of longitudinal and transversal waves in the analysis and in the numerical modeling of elastodynamic waves scattering problems. The exact absorbing condition imposed on the computational boundary gathers the outgoing behavior of scattered waves given by their Green's integral representation formula with a modified Kupradze radiation condition that ensures uniqueness results and improve the system's conditioning. The truncation boundary can even be closely located from the obstacle with a distance of a few element lengths. Numerical experiments show the accuracy of the Jami-Lenoir approach and the efficiency of the Schwarz preconditioner for the solution of the exterior Neumann problem with a Krylov iterative solver.

关于线性弹性波散射问题的有限元与积分表示之间的耦合:分析与模拟
在本文中,我们展示了一种用于解决无界介质中波散射问题的精确截断方法(即 Jami-Lenoir 方法)在线性弹性中的适用性。我们的方法避免了通常在分析和数值模拟弹性动力波散射问题时将波分成纵波和横波之和的做法。在计算边界上施加的精确吸收条件收集了由格林积分表示公式给出的散射波的外向行为,并修正了库普拉德泽辐射条件,从而确保了结果的唯一性,并改善了系统的调节性。截断边界甚至可以与障碍物保持几个元素长度的距离。数值实验表明,在使用克雷洛夫迭代求解器求解外部诺依曼问题时,Jami-Lenoir 方法的精确性和 Schwarz 预处理器的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信