Gro Grunnet Pløen , Charlotte Brandt Sørensen , Jacob Fog Bentzon
{"title":"Smooth muscle cells clonally expand in a murine carotid allograft model complicated by immune reactions to reporter transgenes","authors":"Gro Grunnet Pløen , Charlotte Brandt Sørensen , Jacob Fog Bentzon","doi":"10.1016/j.trim.2024.102129","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><p>Most experimental studies of allograft vasculopathy (AV) have relied on transplantation between major histocompatibility complex-mismatched inbred mouse strains, but this leads to the complete eradication of donor smooth muscle cells (SMCs) and lesions formed by recipient cells. This is unlike human AV which is thought to form mainly by donor SMCs. Here, we studied sources of neointimal cells in a minor histocompatibility antigen-mismatched AV model by combining male-to-female orthotopic carotid transplantations and lineage tracing by SMC-specific expression of fluorescent proteins.</p></div><div><h3>Methods</h3><p>To track SMC-derived cells in allograft vasculopathy, we used male donor mice with SMC-restricted Cre recombination of the mT/mG reporter transgene, which switches expression of membrane-bound red fluorescent protein (RFP) to green fluorescent protein (GFP), or the stochastically recombining Confetti reporter transgene, which yields a mosaic expression of four fluorescent proteins. Donor carotid segments were harvested and orthotopically allografted to female recipients that were wildtype or had non-recombined reporter transgenes. Inhibition of T cell responses by CTLA4Ig was used in some experiments. Sections of lesions harvested after 4 weeks were analyzed by fluorescence microscopy.</p></div><div><h3>Results</h3><p>Donor-derived SMCs survived and gave rise to part of the neointimal cells in experiments where carotid segments from recombined mT/mG male mice were transplanted into wild-type or non-recombined mT/mG female mice. Sex-mismatched transplants developed significant lesions, increasing the intimal and medial area 4.6-fold (<em>p</em> = 0.038) and 2.0-fold (<em>p</em> = 0.024) compared to sex- and fluorescence-matched controls, respectively. Interestingly, sex-matched fluorescence-positive transplants developed intimal lesions in 50% of fluorescence-naïve recipient controls. To study the clonal structure of the neointimal donor-derived SMC lineage cells, we then transplanted male carotids with heterozygous or homozygous recombined Confetti transgenes into female recipients. These transplants developed lesions with few surviving donor SMCs, indicating that expression of the Confetti reporter increased rejection and donor-specific SMC death. Some of the few remaining donor SMCs underwent clonal expansion. CTLA4Ig administration at the time of surgery did not improve SMC survival in mT/mG or Confetti transplants.</p></div><div><h3>Conclusion</h3><p>Male-to-female transplant models feature donor-derived SMCs, some of which undergo clonal expansion, but immune rejection to fluorescence reporters appears to bias results in lineage tracing models. Overcoming these challenges with alternative reporter transgenes or tolerant recipients is necessary to study the mechanisms by which donor SMCs contribute to allograft vasculopathy.</p></div>","PeriodicalId":23304,"journal":{"name":"Transplant immunology","volume":"87 ","pages":"Article 102129"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S096632742400145X/pdfft?md5=c5cb82ddbbccc8cd674b0f491124b899&pid=1-s2.0-S096632742400145X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplant immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096632742400145X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Most experimental studies of allograft vasculopathy (AV) have relied on transplantation between major histocompatibility complex-mismatched inbred mouse strains, but this leads to the complete eradication of donor smooth muscle cells (SMCs) and lesions formed by recipient cells. This is unlike human AV which is thought to form mainly by donor SMCs. Here, we studied sources of neointimal cells in a minor histocompatibility antigen-mismatched AV model by combining male-to-female orthotopic carotid transplantations and lineage tracing by SMC-specific expression of fluorescent proteins.
Methods
To track SMC-derived cells in allograft vasculopathy, we used male donor mice with SMC-restricted Cre recombination of the mT/mG reporter transgene, which switches expression of membrane-bound red fluorescent protein (RFP) to green fluorescent protein (GFP), or the stochastically recombining Confetti reporter transgene, which yields a mosaic expression of four fluorescent proteins. Donor carotid segments were harvested and orthotopically allografted to female recipients that were wildtype or had non-recombined reporter transgenes. Inhibition of T cell responses by CTLA4Ig was used in some experiments. Sections of lesions harvested after 4 weeks were analyzed by fluorescence microscopy.
Results
Donor-derived SMCs survived and gave rise to part of the neointimal cells in experiments where carotid segments from recombined mT/mG male mice were transplanted into wild-type or non-recombined mT/mG female mice. Sex-mismatched transplants developed significant lesions, increasing the intimal and medial area 4.6-fold (p = 0.038) and 2.0-fold (p = 0.024) compared to sex- and fluorescence-matched controls, respectively. Interestingly, sex-matched fluorescence-positive transplants developed intimal lesions in 50% of fluorescence-naïve recipient controls. To study the clonal structure of the neointimal donor-derived SMC lineage cells, we then transplanted male carotids with heterozygous or homozygous recombined Confetti transgenes into female recipients. These transplants developed lesions with few surviving donor SMCs, indicating that expression of the Confetti reporter increased rejection and donor-specific SMC death. Some of the few remaining donor SMCs underwent clonal expansion. CTLA4Ig administration at the time of surgery did not improve SMC survival in mT/mG or Confetti transplants.
Conclusion
Male-to-female transplant models feature donor-derived SMCs, some of which undergo clonal expansion, but immune rejection to fluorescence reporters appears to bias results in lineage tracing models. Overcoming these challenges with alternative reporter transgenes or tolerant recipients is necessary to study the mechanisms by which donor SMCs contribute to allograft vasculopathy.
期刊介绍:
Transplant Immunology will publish up-to-date information on all aspects of the broad field it encompasses. The journal will be directed at (basic) scientists, tissue typers, transplant physicians and surgeons, and research and data on all immunological aspects of organ-, tissue- and (haematopoietic) stem cell transplantation are of potential interest to the readers of Transplant Immunology. Original papers, Review articles and Hypotheses will be considered for publication and submitted manuscripts will be rapidly peer-reviewed and published. They will be judged on the basis of scientific merit, originality, timeliness and quality.