Na Liu , Zeyang Zhang , Guodong Wu , Yuandong Jiang , Qingdu Li , Lihong Wan
{"title":"Multi-line laser scanning reconstruction with binocularly speckle matching and trained deep neural networks","authors":"Na Liu , Zeyang Zhang , Guodong Wu , Yuandong Jiang , Qingdu Li , Lihong Wan","doi":"10.1016/j.optlaseng.2024.108582","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-line laser scanning system for 3D topography measurement is proposed. This method not only has the advantages of high precision of laser scanning technology, but also has high reconstruction efficiency. In this paper, speckle reconstruction technique, multi-line laser technique and Biocular reconstruction technique are used to construct a 3D reconstruction system, and test equipment is built, and the problems existing in the system establishment process are actually studied. In order to solve the problem of mismatching in binocular multi-line laser matching, a method to sort out the correspondence of multiple laser lines in binocular images based on speckle matching results is proposed. In order to optimize the multi-line laser matching effect, a speckle matching network based on deep learning is proposed, which integrates the grayscale images of the left and right cameras as supplementary information, and takes the speckle image and grayscale image as the input of the network model to obtain more accurate and edge-complete matching results. Finally, the matching results of the multi-line laser and the camera calibration parameters were used to reconstruct the object point cloud. Experimental results show that the proposed speckle matching method can make binocular multiline laser point cloud reconstruction more robust and stable than the traditional method, and through the accuracy analysis of the system, it is proved that the average measurement accuracy of the proposed method can reach 0.05 mm.</p></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005608","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-line laser scanning system for 3D topography measurement is proposed. This method not only has the advantages of high precision of laser scanning technology, but also has high reconstruction efficiency. In this paper, speckle reconstruction technique, multi-line laser technique and Biocular reconstruction technique are used to construct a 3D reconstruction system, and test equipment is built, and the problems existing in the system establishment process are actually studied. In order to solve the problem of mismatching in binocular multi-line laser matching, a method to sort out the correspondence of multiple laser lines in binocular images based on speckle matching results is proposed. In order to optimize the multi-line laser matching effect, a speckle matching network based on deep learning is proposed, which integrates the grayscale images of the left and right cameras as supplementary information, and takes the speckle image and grayscale image as the input of the network model to obtain more accurate and edge-complete matching results. Finally, the matching results of the multi-line laser and the camera calibration parameters were used to reconstruct the object point cloud. Experimental results show that the proposed speckle matching method can make binocular multiline laser point cloud reconstruction more robust and stable than the traditional method, and through the accuracy analysis of the system, it is proved that the average measurement accuracy of the proposed method can reach 0.05 mm.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques