Muhammad Abdul Rehman , Bilal Mushtaq , Sohail Khalid , Mujeeb Ur Rehman
{"title":"Design of a miniaturized multi resonance resonator based highly selective dual wideband bandpass filter","authors":"Muhammad Abdul Rehman , Bilal Mushtaq , Sohail Khalid , Mujeeb Ur Rehman","doi":"10.1016/j.mejo.2024.106411","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the design of a highly selective dual-wideband bandpass filter. The filter is designed by using multi-resonance resonator consisting of two stub-loaded step impedance resonators separated by an inter-digital capacitor. The inter-digital capacitor generates capacitive coupling, resulting in multiple resonating modes. The proposed filter generates two passband frequencies centered at 5.75 GHz and 11.5 GHz. Experimental measurements show that the maximum insertion loss in the passbands is 0.83 dB and 0.87 dB, while the reflection losses are better than 10.8 dB and 12.6 dB, respectively. The resonant frequencies can be adjusted by changing the length of the loaded stubs. The proposed dual-wideband bandpass filter offers improved out-of-band rejection and selectivity by generating seven transmission poles and seven transmission zeros around both passbands. The experimental results confirm the effectiveness of the proposed filter. Furthermore, the filter has a compact size of <span><math><mrow><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>61</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>66</mn><mo>)</mo></mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span>, making it suitable for integration into microwave sensing devices.</p></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879239124001152/pdfft?md5=4818d63dafffd47325c9ae13d3aa4482&pid=1-s2.0-S1879239124001152-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124001152","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design of a highly selective dual-wideband bandpass filter. The filter is designed by using multi-resonance resonator consisting of two stub-loaded step impedance resonators separated by an inter-digital capacitor. The inter-digital capacitor generates capacitive coupling, resulting in multiple resonating modes. The proposed filter generates two passband frequencies centered at 5.75 GHz and 11.5 GHz. Experimental measurements show that the maximum insertion loss in the passbands is 0.83 dB and 0.87 dB, while the reflection losses are better than 10.8 dB and 12.6 dB, respectively. The resonant frequencies can be adjusted by changing the length of the loaded stubs. The proposed dual-wideband bandpass filter offers improved out-of-band rejection and selectivity by generating seven transmission poles and seven transmission zeros around both passbands. The experimental results confirm the effectiveness of the proposed filter. Furthermore, the filter has a compact size of , making it suitable for integration into microwave sensing devices.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.