{"title":"Construction of pairwise orthogonal Parseval frames generated by filters on LCA groups","authors":"Navneet Redhu , Anupam Gumber , Niraj K. Shukla","doi":"10.1016/j.acha.2024.101708","DOIUrl":null,"url":null,"abstract":"<div><p>The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfying the local integrability condition (LIC) and having the Calderón sum one, where <em>G</em> is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we provide a result for constructing <em>N</em> numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"74 ","pages":"Article 101708"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032400085X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in satisfying the local integrability condition (LIC) and having the Calderón sum one, where G is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we provide a result for constructing N numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in and , using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.