{"title":"Effects of boriding and aluminizing on the electrochemical and wear behavior of IN-718 nickel-based alloy","authors":"","doi":"10.1016/j.surfcoat.2024.131314","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the distinct surface coating properties of IN-718 nickel-based alloy after boriding and aluminizing treatments, a comparative study was conducted. Optimal process parameters for both treatments were determined to be 950 °C for 10 h, based on cross-sectional analyses using scanning electron microscopy, X-ray diffraction, and electron probe microanalysis. Coating growth mechanisms were elucidated for both treatments. Electrochemical testing revealed superior corrosion resistance in the borided specimens. While nanoindentation measurements showed lower surface hardness for the aluminized specimens compared to their borided counterparts, tribological testing demonstrated superior performance of the aluminized specimens under dry sliding conditions. This enhanced wear behavior for the aluminized specimens was attributed to the lubricating effect of a plastically deformed tribolayer formed during testing. The wear mechanisms for both borided and aluminized specimens were systematically analyzed and discussed.</p></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224009459","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the distinct surface coating properties of IN-718 nickel-based alloy after boriding and aluminizing treatments, a comparative study was conducted. Optimal process parameters for both treatments were determined to be 950 °C for 10 h, based on cross-sectional analyses using scanning electron microscopy, X-ray diffraction, and electron probe microanalysis. Coating growth mechanisms were elucidated for both treatments. Electrochemical testing revealed superior corrosion resistance in the borided specimens. While nanoindentation measurements showed lower surface hardness for the aluminized specimens compared to their borided counterparts, tribological testing demonstrated superior performance of the aluminized specimens under dry sliding conditions. This enhanced wear behavior for the aluminized specimens was attributed to the lubricating effect of a plastically deformed tribolayer formed during testing. The wear mechanisms for both borided and aluminized specimens were systematically analyzed and discussed.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.