{"title":"An investigation on tribological performance in HVOF sprayed of Amdry1371 and Amdry 1371/WC-Co coatings on Ti6Al4V","authors":"","doi":"10.1016/j.surfcoat.2024.131334","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effect of 30 wt% WC addition into Mo-based coating on the microstructure and dry sliding wear performance at elevated temperatures. A ball-on disk tribometer assessed coating wear and friction behavior at room temperature (RT), 300, and 600 °C with loads of 10 and 20 N. The wear rate and mechanism were assessed using SEM-EDX and an optical profilometer. The coating characteristics included density, porosity, surface roughness, microstructure, and microhardness. The bond strength of Amdry1371 and Amdry1371/30%WC-Co coatings is analyzed using the scratch test. During the scratch test, both coatings show cohesive failure at 30-50 N and cohesive along with adhesive failure at 70 N loads. Compared to Amdry1371 coating, Amdry1371/30%WC-Co coating has greater microhardness and bond strength. The wear rate and friction coefficients of Amdry1371 and Amdry1371/30%WC-Co coatings increase with temperatures up to 300 °C and decrease at 600 °C. Wear debris is generated when contact surfaces fracture under the applied load, acting as a third body in the sliding process. This phenomenon, observable from room temperature to 300 °C, increases wear rate and friction coefficients. Protective oxide phases formed on worn surfaces like MoO<sub>3</sub>, NiMO<sub>4</sub>, CoWO<sub>4</sub>, Cr<sub>3</sub>O<sub>8</sub>, and WO<sub>3</sub> film at 600 °C. This glaze layer is present on worn surfaces, significantly reducing friction coefficients and the wear rate of coatings. Amdry1371/30%WC-Co coating exhibits superior wear resistance and lower friction coefficients than Amdry1371 coating due to MoO<sub>3</sub> and WO<sub>3</sub>. At RT, the dominant abrasive wear mechanism shifts to oxidative wear at 600 °C for both coatings.</p></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224009654","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of 30 wt% WC addition into Mo-based coating on the microstructure and dry sliding wear performance at elevated temperatures. A ball-on disk tribometer assessed coating wear and friction behavior at room temperature (RT), 300, and 600 °C with loads of 10 and 20 N. The wear rate and mechanism were assessed using SEM-EDX and an optical profilometer. The coating characteristics included density, porosity, surface roughness, microstructure, and microhardness. The bond strength of Amdry1371 and Amdry1371/30%WC-Co coatings is analyzed using the scratch test. During the scratch test, both coatings show cohesive failure at 30-50 N and cohesive along with adhesive failure at 70 N loads. Compared to Amdry1371 coating, Amdry1371/30%WC-Co coating has greater microhardness and bond strength. The wear rate and friction coefficients of Amdry1371 and Amdry1371/30%WC-Co coatings increase with temperatures up to 300 °C and decrease at 600 °C. Wear debris is generated when contact surfaces fracture under the applied load, acting as a third body in the sliding process. This phenomenon, observable from room temperature to 300 °C, increases wear rate and friction coefficients. Protective oxide phases formed on worn surfaces like MoO3, NiMO4, CoWO4, Cr3O8, and WO3 film at 600 °C. This glaze layer is present on worn surfaces, significantly reducing friction coefficients and the wear rate of coatings. Amdry1371/30%WC-Co coating exhibits superior wear resistance and lower friction coefficients than Amdry1371 coating due to MoO3 and WO3. At RT, the dominant abrasive wear mechanism shifts to oxidative wear at 600 °C for both coatings.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.