Electrochemical and structural properties of binder-free iron-based bifunctional catalyst for aqueous Zinc-Oxygen batteries

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS
Jorge González-Morales , Mario Aparicio , Nataly Carolina Rosero-Navarro , Franco M. Zanotto , Alejandro A. Franco , Jadra Mosa
{"title":"Electrochemical and structural properties of binder-free iron-based bifunctional catalyst for aqueous Zinc-Oxygen batteries","authors":"Jorge González-Morales ,&nbsp;Mario Aparicio ,&nbsp;Nataly Carolina Rosero-Navarro ,&nbsp;Franco M. Zanotto ,&nbsp;Alejandro A. Franco ,&nbsp;Jadra Mosa","doi":"10.1016/j.oceram.2024.100667","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming necessitates efficient new batteries, with Zn-O<sub>2</sub> batteries standing out due to their high theoretical energy density, safety, and long cycle life, making them ideal for large-scale use. However, their industrial application faces challenges such as rapid energy density decline after initial cycles, limited cathode efficiency, and high overpotential between discharge and charge. This study focuses on synthesizing and characterizing ceramic iron compounds as catalysts for the cathode of Zn-O<sub>2</sub> aqueous batteries. The findings revealed that obtained catalysts presented surface active areas beyond 220 m<sup>2</sup>/g after calcination at 800 °C, which removed organic templates. Various thermal treatments have been analysed to measure their impact on the final product. XRD, FTIR, and Raman spectroscopy confirmed sample nitridation, while SEM showed macro–meso-porosity. The electrochemical evaluation demonstrated a significant enhancement in the material's catalytic properties for ORR/OER in alkaline Zn-O2 batteries, surpassing 140 h of satable cyling with catalytic activity for ORR and OER. This improvement, coupled with optimized electrode design, resulted in a substantial increase in the batteries' operational life, achieving stable cycling for over 120 h.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001317/pdfft?md5=2b80e0bcf1617d61d336b5939367f8b0&pid=1-s2.0-S2666539524001317-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Global warming necessitates efficient new batteries, with Zn-O2 batteries standing out due to their high theoretical energy density, safety, and long cycle life, making them ideal for large-scale use. However, their industrial application faces challenges such as rapid energy density decline after initial cycles, limited cathode efficiency, and high overpotential between discharge and charge. This study focuses on synthesizing and characterizing ceramic iron compounds as catalysts for the cathode of Zn-O2 aqueous batteries. The findings revealed that obtained catalysts presented surface active areas beyond 220 m2/g after calcination at 800 °C, which removed organic templates. Various thermal treatments have been analysed to measure their impact on the final product. XRD, FTIR, and Raman spectroscopy confirmed sample nitridation, while SEM showed macro–meso-porosity. The electrochemical evaluation demonstrated a significant enhancement in the material's catalytic properties for ORR/OER in alkaline Zn-O2 batteries, surpassing 140 h of satable cyling with catalytic activity for ORR and OER. This improvement, coupled with optimized electrode design, resulted in a substantial increase in the batteries' operational life, achieving stable cycling for over 120 h.

Abstract Image

锌氧水溶液电池用无粘结剂铁基双功能催化剂的电化学和结构特性
全球变暖需要高效的新型电池,其中 Zn-O2 电池因其理论能量密度高、安全性好、循环寿命长而脱颖而出,非常适合大规模使用。然而,其工业应用面临着一些挑战,如初始循环后能量密度迅速下降、阴极效率有限以及放电和充电之间的过电位较高。本研究的重点是合成和表征作为 Zn-O2 水电池阴极催化剂的陶瓷铁化合物。研究结果表明,在 800 °C 煅烧去除有机模板后,所获得的催化剂表面活性面积超过 220 m2/g。对各种热处理进行了分析,以衡量它们对最终产品的影响。X射线衍射、傅立叶变换红外光谱和拉曼光谱证实了样品的氮化,而扫描电子显微镜则显示了大气孔。电化学评估表明,该材料在碱性 Zn-O2 电池中对 ORR/OER 的催化性能显著增强,ORR 和 OER 的催化活性超过 140 小时的饱和电池。这一改进与优化的电极设计相结合,大大延长了电池的使用寿命,实现了超过 120 小时的稳定循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信