Fast and reliable algorithms for computing the zeros of Althammer polynomials

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Teresa Laudadio , Nicola Mastronardi , Paul Van Dooren
{"title":"Fast and reliable algorithms for computing the zeros of Althammer polynomials","authors":"Teresa Laudadio ,&nbsp;Nicola Mastronardi ,&nbsp;Paul Van Dooren","doi":"10.1016/j.apnum.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this manuscript, we propose a stable algorithm for computing the zeros of Althammer polynomials. These polynomials are orthogonal with respect to a Sobolev inner product, and are even if their degree is even, odd otherwise. Furthermore, their zeros are real, distinct, and located inside the interval <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. The Althammer polynomial <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of degree <em>n</em> satisfies a long recurrence relation, whose coefficients can be arranged into a Hessenberg matrix of order <em>n</em>, with eigenvalues equal to the zeros of the considered polynomial.</p><p>Unfortunately, the eigenvalues of this Hessenberg matrix are very ill–conditioned, and standard balancing procedures do not improve their condition numbers. Here, we introduce a novel algorithm for computing the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, which first transforms the Hessenberg matrix into a similar symmetric tridiagonal one, i.e., a matrix whose eigenvalues are perfectly conditioned, and then computes the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the eigenvalues of the latter tridiagonal matrix. Moreover, we propose a second algorithm, faster but less accurate than the former one, which computes the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the eigenvalues of a truncated Hessenberg matrix, obtained by properly neglecting some diagonals in the upper part of the original matrix. The computational complexity of the proposed algorithms are, respectively, <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></math></span>, and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></math></span>, with <span><math><mi>ℓ</mi><mo>≪</mo><mi>n</mi></math></span> in general.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002356/pdfft?md5=5d69aaffe1451682d680a99c82c21156&pid=1-s2.0-S0168927424002356-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, we propose a stable algorithm for computing the zeros of Althammer polynomials. These polynomials are orthogonal with respect to a Sobolev inner product, and are even if their degree is even, odd otherwise. Furthermore, their zeros are real, distinct, and located inside the interval (1,1). The Althammer polynomial pn(x) of degree n satisfies a long recurrence relation, whose coefficients can be arranged into a Hessenberg matrix of order n, with eigenvalues equal to the zeros of the considered polynomial.

Unfortunately, the eigenvalues of this Hessenberg matrix are very ill–conditioned, and standard balancing procedures do not improve their condition numbers. Here, we introduce a novel algorithm for computing the zeros of pn(x), which first transforms the Hessenberg matrix into a similar symmetric tridiagonal one, i.e., a matrix whose eigenvalues are perfectly conditioned, and then computes the zeros of pn(x) as the eigenvalues of the latter tridiagonal matrix. Moreover, we propose a second algorithm, faster but less accurate than the former one, which computes the zeros of pn(x) as the eigenvalues of a truncated Hessenberg matrix, obtained by properly neglecting some diagonals in the upper part of the original matrix. The computational complexity of the proposed algorithms are, respectively, O(n36), and O(2n), with n in general.

计算阿尔塔默多项式零点的快速可靠算法
在本手稿中,我们提出了一种计算阿尔塔默多项式零点的稳定算法。这些多项式在索波列夫内积方面是正交的,如果它们的度数是偶数,它们就是偶数,否则就是奇数。此外,它们的零点是实数、独特的,并且位于区间(-1,1)内。度数为 n 的 Althammer 多项式 pn(x) 满足长递推关系,其系数可以排列成阶数为 n 的海森伯矩阵,其特征值等于所考虑多项式的零点。在这里,我们引入了一种计算 pn(x) 的零点的新算法,它首先将海森堡矩阵转化为类似的对称三对角矩阵,即特征值完全有条件的矩阵,然后将 pn(x) 的零点计算为后一个三对角矩阵的特征值。此外,我们还提出了第二种算法,计算 pn(x) 的零点为截断的海森伯矩阵的特征值,该矩阵是通过适当忽略原始矩阵上部的一些对角线而得到的。所提算法的计算复杂度分别为 O(n36)和 O(ℓ2n),一般情况下为 ℓ≪n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信