{"title":"Organic fungicides and diphenylamine shift microbiomes of ‘Fuji’ apples during storage","authors":"","doi":"10.1016/j.postharvbio.2024.113196","DOIUrl":null,"url":null,"abstract":"<div><p>The native microbiome plays an important role in biocontrol efficacy, but less is known about how the microbiome responds to conventional and organic natural product fungicides. This study investigated the effects of the conventional fungicide fludioxonil and the organic fungicide natamycin, with and without the superficial scald inhibitor diphenylamine (DPA) on the microbiomes of ‘Fuji’ apples from 1 to 28 d of storage at 0.5 °C plus 7 d at 20 °C. We hypothesized that fungicide applications would shift the microbiome, with a more pronounced effect from natamycin due to the target specificity of fludioxonil. We also predicted that the antioxidant properties of DPA would shift both bacterial and fungal microbiomes. We found that natamycin resulted in modest fungal shifts and fludioxonil resulted in no observed shifts, while DPA strongly affected the fungal microbiome over time. Chemical treatment was not a predictor of bacterial microbiome variation, but bacterial communities shifted throughout storage. However, many of the trends that occurred during storage were reversed during the 7-d shelf life period at 20 °C after storage. Time in cold storage decreased the relative abundance of <em>Pseudomonas</em>, while DPA application reduced the relative abundance of <em>Aureobasidium,</em> both notable biocontrol genera<em>.</em> These results highlight how chemical applications such as DPA may have unintended effects on beneficial microbes that protect fruit from pathogen infection.</p></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521424004411","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The native microbiome plays an important role in biocontrol efficacy, but less is known about how the microbiome responds to conventional and organic natural product fungicides. This study investigated the effects of the conventional fungicide fludioxonil and the organic fungicide natamycin, with and without the superficial scald inhibitor diphenylamine (DPA) on the microbiomes of ‘Fuji’ apples from 1 to 28 d of storage at 0.5 °C plus 7 d at 20 °C. We hypothesized that fungicide applications would shift the microbiome, with a more pronounced effect from natamycin due to the target specificity of fludioxonil. We also predicted that the antioxidant properties of DPA would shift both bacterial and fungal microbiomes. We found that natamycin resulted in modest fungal shifts and fludioxonil resulted in no observed shifts, while DPA strongly affected the fungal microbiome over time. Chemical treatment was not a predictor of bacterial microbiome variation, but bacterial communities shifted throughout storage. However, many of the trends that occurred during storage were reversed during the 7-d shelf life period at 20 °C after storage. Time in cold storage decreased the relative abundance of Pseudomonas, while DPA application reduced the relative abundance of Aureobasidium, both notable biocontrol genera. These results highlight how chemical applications such as DPA may have unintended effects on beneficial microbes that protect fruit from pathogen infection.
期刊介绍:
The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages.
Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing.
Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.