Analyzing symmetric distributions by utilizing extropy measures based on order statistics

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
I.A. Husseiny , H.M. Barakat , M. Nagy , A.H. Mansi
{"title":"Analyzing symmetric distributions by utilizing extropy measures based on order statistics","authors":"I.A. Husseiny ,&nbsp;H.M. Barakat ,&nbsp;M. Nagy ,&nbsp;A.H. Mansi","doi":"10.1016/j.jrras.2024.101100","DOIUrl":null,"url":null,"abstract":"<div><p>Quantification of the uncertainty of distribution functions, by using entropy and extropy, is important in many statistical analyses. Inspired by this, our study uses extropy and several related measures (including the cumulative residual extropy, cumulative past extropy, and extropy-inaccuracy measure) of order statistics (OSs) to offer multiple characterizations of symmetric continuous distributions. We demonstrate that a defining feature of symmetric distributions is the equality of these measures of upper and lower OSs. Using concomitants of OSs based on the bivariate distributions belonging to the Farlie-Gumbel-Morgenstern (FGM) family, the same characteristic is demonstrated for these measures. Finally, a real data set is used to illustrate the applicability of the suggested test.</p></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"17 4","pages":"Article 101100"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S168785072400284X/pdfft?md5=c943303bb83a8c5212d08be54d9518d2&pid=1-s2.0-S168785072400284X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S168785072400284X","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Quantification of the uncertainty of distribution functions, by using entropy and extropy, is important in many statistical analyses. Inspired by this, our study uses extropy and several related measures (including the cumulative residual extropy, cumulative past extropy, and extropy-inaccuracy measure) of order statistics (OSs) to offer multiple characterizations of symmetric continuous distributions. We demonstrate that a defining feature of symmetric distributions is the equality of these measures of upper and lower OSs. Using concomitants of OSs based on the bivariate distributions belonging to the Farlie-Gumbel-Morgenstern (FGM) family, the same characteristic is demonstrated for these measures. Finally, a real data set is used to illustrate the applicability of the suggested test.

利用基于阶次统计的熵量分析对称分布
利用熵和外熵量化分布函数的不确定性在许多统计分析中都很重要。受此启发,我们的研究利用阶次统计量(OSs)的熵和几个相关度量(包括累积残余熵、累积过去熵和熵-精度度量)来提供对称连续分布的多种特征。我们证明,对称分布的一个决定性特征是这些上下阶统计量相等。使用基于属于 Farlie-Gumbel-Morgenstern (FGM) 系列的二元分布的 OS 的伴随值,也证明了这些度量的相同特征。最后,我们使用一组真实数据来说明建议测试的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信