Stability analysis of random fractional-order nonlinear systems and its application

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Ticao Jiao , Guangdeng Zong , Quanxin Zhu , Lei Wang , Haibin Sun
{"title":"Stability analysis of random fractional-order nonlinear systems and its application","authors":"Ticao Jiao ,&nbsp;Guangdeng Zong ,&nbsp;Quanxin Zhu ,&nbsp;Lei Wang ,&nbsp;Haibin Sun","doi":"10.1016/j.cnsns.2024.108342","DOIUrl":null,"url":null,"abstract":"<div><p>The research on stability analysis and control design for random nonlinear systems have been greatly popularized in recent ten years, but almost no literature focuses on the fractional-order case. This paper explores the stability problem for a class of random Caputo fractional-order nonlinear systems. As a prerequisite, under the globally and the locally Lipschitz conditions, it is shown that such systems have a global unique solution with the aid of the generalized Gronwall inequality and a Picard iterative technique. By resorting to Laplace transformation and Lyapunov stability theory, some feasible conditions are established such that the considered fractional-order nonlinear systems are respectively Mittag-Leffler noise-to-state stable, Mittag-Leffler globally asymptotically stable. Then, a tracking control strategy is established for a class of random Caputo fractional-order strict-feedback systems. The feasibility analysis is addressed according to the established stability criteria. Finally, a power system and a mass–spring-damper system modeled by the random fractional-order method are employed to demonstrate the efficiency of the established analysis approach. More critically, the deficiency in the existing literatures is covered up by the current work and a set of new theories and methods in studying random Caputo fractional-order nonlinear systems is built up.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005276/pdfft?md5=ed9aabaf2f84cbf6556be1c427f5ec5f&pid=1-s2.0-S1007570424005276-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005276","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The research on stability analysis and control design for random nonlinear systems have been greatly popularized in recent ten years, but almost no literature focuses on the fractional-order case. This paper explores the stability problem for a class of random Caputo fractional-order nonlinear systems. As a prerequisite, under the globally and the locally Lipschitz conditions, it is shown that such systems have a global unique solution with the aid of the generalized Gronwall inequality and a Picard iterative technique. By resorting to Laplace transformation and Lyapunov stability theory, some feasible conditions are established such that the considered fractional-order nonlinear systems are respectively Mittag-Leffler noise-to-state stable, Mittag-Leffler globally asymptotically stable. Then, a tracking control strategy is established for a class of random Caputo fractional-order strict-feedback systems. The feasibility analysis is addressed according to the established stability criteria. Finally, a power system and a mass–spring-damper system modeled by the random fractional-order method are employed to demonstrate the efficiency of the established analysis approach. More critically, the deficiency in the existing literatures is covered up by the current work and a set of new theories and methods in studying random Caputo fractional-order nonlinear systems is built up.

随机分数阶非线性系统的稳定性分析及其应用
近十年来,随机非线性系统的稳定性分析和控制设计研究得到了极大的推广,但几乎没有文献关注分数阶情况。本文探讨了一类随机 Caputo 分数阶非线性系统的稳定性问题。作为前提条件,在全局和局部 Lipschitz 条件下,借助广义 Gronwall 不等式和 Picard 迭代技术,证明此类系统具有全局唯一解。借助拉普拉斯变换和 Lyapunov 稳定性理论,建立了一些可行条件,使得所考虑的分数阶非线性系统分别具有 Mittag-Leffler 噪声到状态稳定性、Mittag-Leffler 全局渐近稳定性。然后,建立了一类随机 Caputo 分数阶严格反馈系统的跟踪控制策略。根据所建立的稳定性标准进行了可行性分析。最后,采用随机分数阶方法建模的电力系统和质量弹簧-阻尼系统证明了所建立的分析方法的有效性。更重要的是,本研究弥补了现有文献的不足,建立了一套研究随机卡普托分数阶非线性系统的新理论和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信