Toward Exact Critical Exponents from the low-order loop expansion of the Effective Potential in Quantum Field Theory

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Abouzeid M. Shalaby
{"title":"Toward Exact Critical Exponents from the low-order loop expansion of the Effective Potential in Quantum Field Theory","authors":"Abouzeid M. Shalaby","doi":"10.1016/j.aop.2024.169786","DOIUrl":null,"url":null,"abstract":"<div><p>The asymptotic strong-coupling behavior as well as the exact critical exponents from scalar field theory even for the simplest case of <span><math><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></math></span> dimensions have not been obtained yet. Hagen Kleinert has linked both critical exponents and strong coupling parameters to each other. He used a variational technique ( back to kleinert and Feynman) to extract accurate values for the strong coupling parameters from which he was able to extract precise critical exponents. In this work, we suggest a simple method of using the effective potential ( low order) to obtain exact values for the strong-coupling parameters for the <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> scalar field theory in <span><math><mrow><mn>0</mn><mo>+</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></math></span> space–time dimensions. For the <span><math><mrow><mn>0</mn><mo>+</mo><mn>1</mn></mrow></math></span> case, our results coincide with the well-known exact values already known from literature while for the <span><math><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow></math></span> case we test the results by obtaining the corresponding exact critical exponent. As the effective potential is a well-established tool in quantum field theory, we expect that the results can be easily extended to the most important three dimensional case and then the dream of getting exact critical exponents is made possible.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169786"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003491624001933/pdfft?md5=1d95469d38c29feb18a87246f542830b&pid=1-s2.0-S0003491624001933-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001933","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The asymptotic strong-coupling behavior as well as the exact critical exponents from scalar field theory even for the simplest case of 1+1 dimensions have not been obtained yet. Hagen Kleinert has linked both critical exponents and strong coupling parameters to each other. He used a variational technique ( back to kleinert and Feynman) to extract accurate values for the strong coupling parameters from which he was able to extract precise critical exponents. In this work, we suggest a simple method of using the effective potential ( low order) to obtain exact values for the strong-coupling parameters for the ϕ4 scalar field theory in 0+1 and 1+1 space–time dimensions. For the 0+1 case, our results coincide with the well-known exact values already known from literature while for the 1+1 case we test the results by obtaining the corresponding exact critical exponent. As the effective potential is a well-established tool in quantum field theory, we expect that the results can be easily extended to the most important three dimensional case and then the dream of getting exact critical exponents is made possible.

从量子场论中有效势能的低阶环扩展中获得精确临界指数
即使是在最简单的 1+1 维情况下,人们也还没有从标量场理论中获得渐近强耦合行为和精确临界指数。哈根-克莱因纳特(Hagen Kleinert)将临界指数和强耦合参数相互联系起来。他使用一种变分技术(回到克莱因纳特和费曼)来提取强耦合参数的精确值,并从中提取出精确的临界指数。在这项工作中,我们提出了一种使用有效势(低阶)的简单方法,以获得 0+1 和 1+1 时空维度下 ϕ4 标量场理论的强耦合参数的精确值。对于 0+1 的情况,我们的结果与文献中已知的著名精确值相吻合,而对于 1+1 的情况,我们通过获得相应的精确临界指数来检验结果。由于有效势是量子场论中一个成熟的工具,我们希望这些结果可以很容易地扩展到最重要的三维情况,从而实现获得精确临界指数的梦想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信