Experimental analysis of combustion characteristics of corn starch dust clouds under the action of unilateral obstacles and machine learning modeling based on PSO-XGBoost
{"title":"Experimental analysis of combustion characteristics of corn starch dust clouds under the action of unilateral obstacles and machine learning modeling based on PSO-XGBoost","authors":"","doi":"10.1016/j.apt.2024.104641","DOIUrl":null,"url":null,"abstract":"<div><p>Corn starch powder is highly flammable and explosive, presenting significant safety hazards of dust explosions when encountering obstacles during its production and processing. This study indicate that with an increase in the number of obstacles, obstacle blockage ratio, and dust concentration, both the average flame spread velocity (AFSV) and the maximum flame spread velocity (MFSV) initially rise and then decline. However, the presence of obstacles significantly enhances both MFSV and AFSV compared to the absence of obstacles. Additionally, Using the Extreme Gradient Boosting (XGBoost) algorithm, predictive models for the MFSV and AFSV of corn starch dust were developed. By employing the Particle Swarm Optimization (PSO) algorithm for hyperparameter tuning, the model achieved an coefficient of determination (R<sup>2</sup>) of 0.9821 for MFSV and 0.9687 for AFSV, enabling highly accurate flame spread velocity (FSV) predictions. Random Forest importance analysis revealed that obstacle characteristics exert a more pronounced impact on FSV.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003170","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Corn starch powder is highly flammable and explosive, presenting significant safety hazards of dust explosions when encountering obstacles during its production and processing. This study indicate that with an increase in the number of obstacles, obstacle blockage ratio, and dust concentration, both the average flame spread velocity (AFSV) and the maximum flame spread velocity (MFSV) initially rise and then decline. However, the presence of obstacles significantly enhances both MFSV and AFSV compared to the absence of obstacles. Additionally, Using the Extreme Gradient Boosting (XGBoost) algorithm, predictive models for the MFSV and AFSV of corn starch dust were developed. By employing the Particle Swarm Optimization (PSO) algorithm for hyperparameter tuning, the model achieved an coefficient of determination (R2) of 0.9821 for MFSV and 0.9687 for AFSV, enabling highly accurate flame spread velocity (FSV) predictions. Random Forest importance analysis revealed that obstacle characteristics exert a more pronounced impact on FSV.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)