Thi Nhan Nguyen , Quoc Tri Phung , Diederik Jacques , Lander Frederickx , Ziyou Yu , Alexandre Dauzeres , Dimitrios Sakellariou , Jan Elsen , Yiannis Pontikes
{"title":"Changes in the structure of alkali activated slag mortars subjected to accelerated leaching","authors":"Thi Nhan Nguyen , Quoc Tri Phung , Diederik Jacques , Lander Frederickx , Ziyou Yu , Alexandre Dauzeres , Dimitrios Sakellariou , Jan Elsen , Yiannis Pontikes","doi":"10.1016/j.cemconcomp.2024.105755","DOIUrl":null,"url":null,"abstract":"<div><p>The chemically induced degradation of alkali-activated materials exposed to the surrounding environment is a critical concern for durability. In this study, the leaching of alkali activated slag mortars (AASs) subjected to a 6M NH<sub>4</sub>NO<sub>3</sub> solution was investigated by integrating techniques including ICP-OES, XRD/QXRD, TGA/DSC, ATR-FTIR, and <sup>29</sup>Si MAS-NMR. The results revealed that the main leachable elements from the AASs and their leaching rates decreased in the following order: Na, K, Ca, and Mg. In contrast, Si and Al, the key elements in the C-A-S-H gel, displayed a remarkable resistance to leaching. Upon NH<sub>4</sub>NO<sub>3</sub> attack, the primary phase (C-A-S-H) becomes more siliceous and has a greater mean chain length through decalcification and dealumination. The second phase, Mg, Al-layered double hydroxide (Mg, Al-LDH, or hydrotalcite), incorporated nitrate from the surrounding solution, sulfate from precursor dissolution, and Ca from gel decalcification to form nitrate/sulfate-bearing Ca, Al-LDH phases. Remarkably, the water-to-binder ratio exerted a nuanced influence, dictating the pace of element leaching, while exhibiting a relatively modest impact on the stability of the solid phases after 28 days of exposure. This work proposes a leaching mechanism for understanding the leaching process occurring in AASs based on an in-depth experimental exploration of mineralogical alterations.</p></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"154 ","pages":"Article 105755"},"PeriodicalIF":10.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524003287","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The chemically induced degradation of alkali-activated materials exposed to the surrounding environment is a critical concern for durability. In this study, the leaching of alkali activated slag mortars (AASs) subjected to a 6M NH4NO3 solution was investigated by integrating techniques including ICP-OES, XRD/QXRD, TGA/DSC, ATR-FTIR, and 29Si MAS-NMR. The results revealed that the main leachable elements from the AASs and their leaching rates decreased in the following order: Na, K, Ca, and Mg. In contrast, Si and Al, the key elements in the C-A-S-H gel, displayed a remarkable resistance to leaching. Upon NH4NO3 attack, the primary phase (C-A-S-H) becomes more siliceous and has a greater mean chain length through decalcification and dealumination. The second phase, Mg, Al-layered double hydroxide (Mg, Al-LDH, or hydrotalcite), incorporated nitrate from the surrounding solution, sulfate from precursor dissolution, and Ca from gel decalcification to form nitrate/sulfate-bearing Ca, Al-LDH phases. Remarkably, the water-to-binder ratio exerted a nuanced influence, dictating the pace of element leaching, while exhibiting a relatively modest impact on the stability of the solid phases after 28 days of exposure. This work proposes a leaching mechanism for understanding the leaching process occurring in AASs based on an in-depth experimental exploration of mineralogical alterations.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.