Bohao Qi, Nuo Wang, Suwan Cui, Hao Liu, Xin Hu, Haoshuai Li, Yang Li, Yiming Li, Jinren Lu, Mutai Bao
{"title":"Biomimetic structural aerogel derived from green tide enteromorpha-prolifera: Multi-sided unidirectional freeze casting and solar-driven viscous oil spill remediation","authors":"Bohao Qi, Nuo Wang, Suwan Cui, Hao Liu, Xin Hu, Haoshuai Li, Yang Li, Yiming Li, Jinren Lu, Mutai Bao","doi":"10.1016/j.cej.2024.155647","DOIUrl":null,"url":null,"abstract":"The development of environmental remediation materials from renewable biowaste, especially for the cleanup of viscous oil spills in an eco-friendly manner, marks a substantial advancement in functional materials. This study proposes a biomass aerogel (M−MCEP) transformed from Enteromorpha prolifera (EP) in green tides for solar-driven recovery of high-viscosity oil spills. Inspired by the lamella-bridge architecture of Thalia dealbata stems, a biomimetic structure with multi-domain, long-range aligned lamella-bridge interconnections is constructed by a multi-sided unidirectional freeze-casting technique. Multi-scale interface optimization between rigid photothermal fillers and soft lamellar layers achieves multiple reinforcements, providing aerogel with a perfect balance of elasticity and strength. The multidomain low tortuosity channels and photothermal effects enhance M−MCEP’s photothermal conversion (95.2 %) and thermal conductivity (0.3517 W/m·K), reducing oil flow resistance and achieving high oil retention efficiency (>92 %). Under 1 sun irradiation, M−MCEP rapidly heats to 67.3 °C, effectively reducing the viscosity of crude oil in situ, with a crude oil adsorption rate of 1843 mL/m within 30 s. Moreover, M−MCEP captures emulsified oil in oil-in-water emulsions through high-speed repeated oscillations, achieving a separation efficiency of 96.42–99.21 %. Renewable resources and unique structural designs provided by nature drive the development of advanced biomimetic aerogels for efficiently remedying catastrophic oil spills.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.155647","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of environmental remediation materials from renewable biowaste, especially for the cleanup of viscous oil spills in an eco-friendly manner, marks a substantial advancement in functional materials. This study proposes a biomass aerogel (M−MCEP) transformed from Enteromorpha prolifera (EP) in green tides for solar-driven recovery of high-viscosity oil spills. Inspired by the lamella-bridge architecture of Thalia dealbata stems, a biomimetic structure with multi-domain, long-range aligned lamella-bridge interconnections is constructed by a multi-sided unidirectional freeze-casting technique. Multi-scale interface optimization between rigid photothermal fillers and soft lamellar layers achieves multiple reinforcements, providing aerogel with a perfect balance of elasticity and strength. The multidomain low tortuosity channels and photothermal effects enhance M−MCEP’s photothermal conversion (95.2 %) and thermal conductivity (0.3517 W/m·K), reducing oil flow resistance and achieving high oil retention efficiency (>92 %). Under 1 sun irradiation, M−MCEP rapidly heats to 67.3 °C, effectively reducing the viscosity of crude oil in situ, with a crude oil adsorption rate of 1843 mL/m within 30 s. Moreover, M−MCEP captures emulsified oil in oil-in-water emulsions through high-speed repeated oscillations, achieving a separation efficiency of 96.42–99.21 %. Renewable resources and unique structural designs provided by nature drive the development of advanced biomimetic aerogels for efficiently remedying catastrophic oil spills.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.