James A. Green, Dominik Brey, Leyla P. Razgatlioglu, Badria Ali, Bartosz Błasiak, Irene Burghardt
{"title":"Internal Conversion Cascade in a Carbon Nanobelt: A Multiconfigurational Quantum Dynamical Study","authors":"James A. Green, Dominik Brey, Leyla P. Razgatlioglu, Badria Ali, Bartosz Błasiak, Irene Burghardt","doi":"10.1021/acs.jctc.4c00841","DOIUrl":null,"url":null,"abstract":"Carbon nanobelts feature intriguing photophysical properties, due to their high symmetry and structural rigidity. Here, we consider a (6,6) armchair carbon nanobelt, i.e., the very first carbon nanobelt to be synthesized [Povie et al., <i>Science</i> <b>2017</b>, 356, 172] and characterize the internal conversion dynamics using multiconfigurational quantum dynamics via the multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) method. A symmetry-adapted linear vibronic coupling Hamiltonian for 26 electronic states and 210 vibrational modes is employed. Electronic excitations are found to decay through a dense manifold of excited states, which interact via multiple conical intersections, while inducing minimal geometry change. It is shown that a rapid coherent decay, exhibiting a nonvanishing quantum flux on a time scale of less than 50 fs, transitions toward a slower, decoherent decay at longer times. As previously suggested in the literature, electronic relaxation is hindered by phonon bottlenecks such that a stepwise internal conversion cascade is observed. The computed vibronic absorption spectrum is shown to be in good agreement with the experimental spectrum.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00841","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanobelts feature intriguing photophysical properties, due to their high symmetry and structural rigidity. Here, we consider a (6,6) armchair carbon nanobelt, i.e., the very first carbon nanobelt to be synthesized [Povie et al., Science2017, 356, 172] and characterize the internal conversion dynamics using multiconfigurational quantum dynamics via the multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) method. A symmetry-adapted linear vibronic coupling Hamiltonian for 26 electronic states and 210 vibrational modes is employed. Electronic excitations are found to decay through a dense manifold of excited states, which interact via multiple conical intersections, while inducing minimal geometry change. It is shown that a rapid coherent decay, exhibiting a nonvanishing quantum flux on a time scale of less than 50 fs, transitions toward a slower, decoherent decay at longer times. As previously suggested in the literature, electronic relaxation is hindered by phonon bottlenecks such that a stepwise internal conversion cascade is observed. The computed vibronic absorption spectrum is shown to be in good agreement with the experimental spectrum.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.