Fabio Caliendo, Elvira Vitu, Junmin Wang, Shuo-Hsiu Kuo, Hayden Sandt, Casper Nørskov Enghuus, Jesse Tordoff, Neslly Estrada, James J. Collins, Ron Weiss
{"title":"Customizable gene sensing and response without altering endogenous coding sequences","authors":"Fabio Caliendo, Elvira Vitu, Junmin Wang, Shuo-Hsiu Kuo, Hayden Sandt, Casper Nørskov Enghuus, Jesse Tordoff, Neslly Estrada, James J. Collins, Ron Weiss","doi":"10.1038/s41589-024-01733-y","DOIUrl":null,"url":null,"abstract":"<p>Synthetic biology aims to modify cellular behaviors by implementing genetic circuits that respond to changes in cell state. Integrating genetic biosensors into endogenous gene coding sequences using clustered regularly interspaced short palindromic repeats and Cas9 enables interrogation of gene expression dynamics in the appropriate chromosomal context. However, embedding a biosensor into a gene coding sequence may unpredictably alter endogenous gene regulation. To address this challenge, we developed an approach to integrate genetic biosensors into endogenous genes without modifying their coding sequence by inserting into their terminator region single-guide RNAs that activate downstream circuits. Sensor dosage responses can be fine-tuned and predicted through a mathematical model. We engineered a cell stress sensor and actuator in CHO-K1 cells that conditionally activates antiapoptotic protein BCL-2 through a downstream circuit, thereby increasing cell survival under stress conditions. Our gene sensor and actuator platform has potential use for a wide range of applications that include biomanufacturing, cell fate control and cell-based therapeutics.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"9 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01733-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic biology aims to modify cellular behaviors by implementing genetic circuits that respond to changes in cell state. Integrating genetic biosensors into endogenous gene coding sequences using clustered regularly interspaced short palindromic repeats and Cas9 enables interrogation of gene expression dynamics in the appropriate chromosomal context. However, embedding a biosensor into a gene coding sequence may unpredictably alter endogenous gene regulation. To address this challenge, we developed an approach to integrate genetic biosensors into endogenous genes without modifying their coding sequence by inserting into their terminator region single-guide RNAs that activate downstream circuits. Sensor dosage responses can be fine-tuned and predicted through a mathematical model. We engineered a cell stress sensor and actuator in CHO-K1 cells that conditionally activates antiapoptotic protein BCL-2 through a downstream circuit, thereby increasing cell survival under stress conditions. Our gene sensor and actuator platform has potential use for a wide range of applications that include biomanufacturing, cell fate control and cell-based therapeutics.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.