Customizable gene sensing and response without altering endogenous coding sequences

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fabio Caliendo, Elvira Vitu, Junmin Wang, Shuo-Hsiu Kuo, Hayden Sandt, Casper Nørskov Enghuus, Jesse Tordoff, Neslly Estrada, James J. Collins, Ron Weiss
{"title":"Customizable gene sensing and response without altering endogenous coding sequences","authors":"Fabio Caliendo, Elvira Vitu, Junmin Wang, Shuo-Hsiu Kuo, Hayden Sandt, Casper Nørskov Enghuus, Jesse Tordoff, Neslly Estrada, James J. Collins, Ron Weiss","doi":"10.1038/s41589-024-01733-y","DOIUrl":null,"url":null,"abstract":"<p>Synthetic biology aims to modify cellular behaviors by implementing genetic circuits that respond to changes in cell state. Integrating genetic biosensors into endogenous gene coding sequences using clustered regularly interspaced short palindromic repeats and Cas9 enables interrogation of gene expression dynamics in the appropriate chromosomal context. However, embedding a biosensor into a gene coding sequence may unpredictably alter endogenous gene regulation. To address this challenge, we developed an approach to integrate genetic biosensors into endogenous genes without modifying their coding sequence by inserting into their terminator region single-guide RNAs that activate downstream circuits. Sensor dosage responses can be fine-tuned and predicted through a mathematical model. We engineered a cell stress sensor and actuator in CHO-K1 cells that conditionally activates antiapoptotic protein BCL-2 through a downstream circuit, thereby increasing cell survival under stress conditions. Our gene sensor and actuator platform has potential use for a wide range of applications that include biomanufacturing, cell fate control and cell-based therapeutics.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01733-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic biology aims to modify cellular behaviors by implementing genetic circuits that respond to changes in cell state. Integrating genetic biosensors into endogenous gene coding sequences using clustered regularly interspaced short palindromic repeats and Cas9 enables interrogation of gene expression dynamics in the appropriate chromosomal context. However, embedding a biosensor into a gene coding sequence may unpredictably alter endogenous gene regulation. To address this challenge, we developed an approach to integrate genetic biosensors into endogenous genes without modifying their coding sequence by inserting into their terminator region single-guide RNAs that activate downstream circuits. Sensor dosage responses can be fine-tuned and predicted through a mathematical model. We engineered a cell stress sensor and actuator in CHO-K1 cells that conditionally activates antiapoptotic protein BCL-2 through a downstream circuit, thereby increasing cell survival under stress conditions. Our gene sensor and actuator platform has potential use for a wide range of applications that include biomanufacturing, cell fate control and cell-based therapeutics.

Abstract Image

无需改变内源编码序列即可定制基因感应和响应
合成生物学旨在通过实施能对细胞状态变化做出反应的基因电路来改变细胞行为。利用簇状规则间隔短回文重复序列和 Cas9 将基因生物传感器整合到内源基因编码序列中,可以在适当的染色体上下文中检测基因表达动态。然而,将生物传感器嵌入基因编码序列可能会不可预测地改变内源基因调控。为了应对这一挑战,我们开发了一种方法,通过在内源基因的终止区插入单导 RNA 来激活下游回路,从而在不修改编码序列的情况下将基因生物传感器整合到内源基因中。传感器的剂量反应可以通过数学模型进行微调和预测。我们在 CHO-K1 细胞中设计了一种细胞压力传感器和致动器,它能通过下游电路有条件地激活抗凋亡蛋白 BCL-2,从而提高细胞在压力条件下的存活率。我们的基因传感器和致动器平台具有广泛的应用潜力,包括生物制造、细胞命运控制和细胞疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信