{"title":"Instabilities and Mixing in Inertial Confinement Fusion","authors":"Ye Zhou, James D. Sadler, Omar A. Hurricane","doi":"10.1146/annurev-fluid-022824-110008","DOIUrl":null,"url":null,"abstract":"By imploding fuel of hydrogen isotopes, inertial confinement fusion (ICF) aims to create conditions that mimic those in the Sun's core. This is fluid dynamics in an extreme regime, with the ultimate goal of making nuclear fusion a viable clean energy source. The fuel must be reliably and symmetrically compressed to temperatures exceeding 100 million degrees Celsius. After the best part of a century of research, the foremost fusion milestone was reached in 2021, when ICF became the first technology to achieve an igniting fusion fuel (thermonuclear instability), and then in 2022 scientific energy breakeven was attained. A key trade-off of the ICF platform is that greater fuel compression leads to higher burn efficiency, but at the expense of amplified Rayleigh–Taylor and Richtmyer–Meshkov instabilities and kinetic-energy-wasting asymmetries. In extreme cases, these three-dimensional instabilities can completely break up the implosion. Even in the highest-yielding 2022 scientific breakeven experiment, high-atomic-number (high-Z) contaminants were unintentionally injected into the fuel. Here we review the pivotal role that fluid dynamics plays in the construction of a stable implosion and the decades of improved understanding and isolated experiments that have contributed to fusion ignition.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"5 1","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-022824-110008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
By imploding fuel of hydrogen isotopes, inertial confinement fusion (ICF) aims to create conditions that mimic those in the Sun's core. This is fluid dynamics in an extreme regime, with the ultimate goal of making nuclear fusion a viable clean energy source. The fuel must be reliably and symmetrically compressed to temperatures exceeding 100 million degrees Celsius. After the best part of a century of research, the foremost fusion milestone was reached in 2021, when ICF became the first technology to achieve an igniting fusion fuel (thermonuclear instability), and then in 2022 scientific energy breakeven was attained. A key trade-off of the ICF platform is that greater fuel compression leads to higher burn efficiency, but at the expense of amplified Rayleigh–Taylor and Richtmyer–Meshkov instabilities and kinetic-energy-wasting asymmetries. In extreme cases, these three-dimensional instabilities can completely break up the implosion. Even in the highest-yielding 2022 scientific breakeven experiment, high-atomic-number (high-Z) contaminants were unintentionally injected into the fuel. Here we review the pivotal role that fluid dynamics plays in the construction of a stable implosion and the decades of improved understanding and isolated experiments that have contributed to fusion ignition.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.