Geometry transition in spinfoams

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Marios Christodoulou, Fabio D’Ambrosio and Charalampos Theofilis
{"title":"Geometry transition in spinfoams","authors":"Marios Christodoulou, Fabio D’Ambrosio and Charalampos Theofilis","doi":"10.1088/1361-6382/ad6114","DOIUrl":null,"url":null,"abstract":"We show how the fixed-spin asymptotics of the EPRL model can be used to perform the spin-sum for spin foam amplitudes defined on fixed two-complexes without interior faces and contracted with coherent spin-network states peaked on a discrete simplicial geometry with macroscopic areas. We work in the representation given in (Han and Krajewski 2014 Class. Quantum Grav.31 01500). We first rederive the latter in a different way suitable for our purposes. We then extend this representation to 2-complexes with a boundary and derive its relation to the coherent state representation. We give the measure providing the resolution of the identity for Thiemann’s state in the twisted geometry parametrization. We then piece together these with other results in the literature and show how the spin sum can be performed analytically using the model asymptotics. These results are relevant to analytic investigations regarding the transition of a black hole to a white hole geometry. In particular, this work was the basis of the calculation presented in Christodoulou and D’Ambrosio (2018 (arXiv:1801.03027)).","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad6114","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show how the fixed-spin asymptotics of the EPRL model can be used to perform the spin-sum for spin foam amplitudes defined on fixed two-complexes without interior faces and contracted with coherent spin-network states peaked on a discrete simplicial geometry with macroscopic areas. We work in the representation given in (Han and Krajewski 2014 Class. Quantum Grav.31 01500). We first rederive the latter in a different way suitable for our purposes. We then extend this representation to 2-complexes with a boundary and derive its relation to the coherent state representation. We give the measure providing the resolution of the identity for Thiemann’s state in the twisted geometry parametrization. We then piece together these with other results in the literature and show how the spin sum can be performed analytically using the model asymptotics. These results are relevant to analytic investigations regarding the transition of a black hole to a white hole geometry. In particular, this work was the basis of the calculation presented in Christodoulou and D’Ambrosio (2018 (arXiv:1801.03027)).
旋转泡沫中的几何转换
我们展示了如何利用 EPRL 模型的固定自旋渐近学,来对定义在无内面的固定二复体上的自旋泡沫振幅进行自旋求和,并在具有宏观区域的离散简约几何上以相干自旋网络态为峰值进行收缩。我们采用(Han 和 Krajewski 2014 Class. Quantum Grav.31 01500)中给出的表示法。我们首先以适合我们目的的不同方式重新解读后者。然后,我们将这一表征扩展到有边界的 2 复合物,并推导出它与相干态表征的关系。我们给出了在扭曲几何参数化中为泰曼状态提供同一性解析的度量。然后,我们将这些结果与文献中的其他结果拼凑在一起,并展示了如何利用模型渐近法来分析自旋和。这些结果与黑洞向白洞几何过渡的分析研究相关。特别是,这项工作是 Christodoulou 和 D'Ambrosio (2018 (arXiv:1801.03027)) 中提出的计算的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信