Tianyu Huang, Qi Wang, Hai Zhang, Yangyang Xin, Yuewei Zhang, Xiankai Chen, Dongdong Zhang, Lian Duan
{"title":"Delocalizing electron distribution in thermally activated delayed fluorophors for high-efficiency and long-lifetime blue electroluminescence","authors":"Tianyu Huang, Qi Wang, Hai Zhang, Yangyang Xin, Yuewei Zhang, Xiankai Chen, Dongdong Zhang, Lian Duan","doi":"10.1038/s41563-024-02004-w","DOIUrl":null,"url":null,"abstract":"Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m−2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l’Eclairage coordinates of (0.14, 0.17). The stability and efficiency of thermally activated delayed fluorescent (TADF) emitters are still limited. Here the authors design TADF compounds by introducing an auxiliary acceptor with both enhanced stability and enhanced efficiency.","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-02004-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m−2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l’Eclairage coordinates of (0.14, 0.17). The stability and efficiency of thermally activated delayed fluorescent (TADF) emitters are still limited. Here the authors design TADF compounds by introducing an auxiliary acceptor with both enhanced stability and enhanced efficiency.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.