Plant Phytochrome Interactions Decode Light and Temperature Signals

Chengwei Yi, Uwe Gerken, Kun Tang, Michael Philipp, Matias D Zurbriggen, Jürgen Köhler, Andreas Möglich
{"title":"Plant Phytochrome Interactions Decode Light and Temperature Signals","authors":"Chengwei Yi, Uwe Gerken, Kun Tang, Michael Philipp, Matias D Zurbriggen, Jürgen Köhler, Andreas Möglich","doi":"10.1093/plcell/koae249","DOIUrl":null,"url":null,"abstract":"Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koae249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.
植物植物色素相互作用解码光和温度信号
植物的植物色素能感知红光和远红光,以适应不断变化的环境。下游生理反应围绕着红光诱导的与植物色素相互作用因子(PIF)的相互作用。由于从适应光的 Pfr 状态到适应暗的 Pr 状态的热还原具有明显的温度依赖性,因此植物色素兼具热敏感受器的双重作用。在这里,我们评估了温感知是否可能延伸到植物色素与 PIF 的相互作用。拟南芥 PHYTOCHROME B(PhyB)与几种 PHYTOCHROME-INTERACTING FACTOR(PIF)变体之间的结合会随着温度的升高而适度加快,而解离则会更快,从而导致植物色素:PIF 复合物的净不稳定性。PIF3 和 PIF6 明显不同的温度曲线可能是植物分层温度反应的基础。我们意外地发现了强连续光下的光接收机制,在这种机制下,植物色素:PIF 复合物的程度会随着红光强度的增加而降低,而不是增加。数学模型合理地解释了这种衰减机制,并将其与红光驱动的 Pr⇄Pfr 快速相互转化和从 Pr 中解离出复合物联系起来。不同的植物色素丰度(如在昼夜周期和发育周期中)和相互作用动态(如在不同的 PIF 之间)会改变衰减的性质和程度,从而使光响应曲线比单纯的植物色素 Pr⇄Pfr 相互转换更具延展性。我们的数据和分析揭示了一种光接收机制,对植物生理学、光遗传学和生物技术应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信