Chemically programmed metabolism drives a superior cell fitness for cartilage regeneration

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yishan Chen, Yiyang Yan, Ruonan Tian, Zixuan Sheng, Liming Li, Jiachen Chen, Yuan Liao, Ya Wen, Junting Lu, Xinyu Liu, Wei Sun, Haoyu Wu, Youguo Liao, Xianzhu Zhang, Xuri Chen, Chengrui An, Kun Zhao, Wanlu Liu, Jianqing Gao, David C. Hay, Hongwei Ouyang
{"title":"Chemically programmed metabolism drives a superior cell fitness for cartilage regeneration","authors":"Yishan Chen,&nbsp;Yiyang Yan,&nbsp;Ruonan Tian,&nbsp;Zixuan Sheng,&nbsp;Liming Li,&nbsp;Jiachen Chen,&nbsp;Yuan Liao,&nbsp;Ya Wen,&nbsp;Junting Lu,&nbsp;Xinyu Liu,&nbsp;Wei Sun,&nbsp;Haoyu Wu,&nbsp;Youguo Liao,&nbsp;Xianzhu Zhang,&nbsp;Xuri Chen,&nbsp;Chengrui An,&nbsp;Kun Zhao,&nbsp;Wanlu Liu,&nbsp;Jianqing Gao,&nbsp;David C. Hay,&nbsp;Hongwei Ouyang","doi":"10.1126/sciadv.adp4408","DOIUrl":null,"url":null,"abstract":"<div >The rapid advancement of cell therapies underscores the importance of understanding fundamental cellular attributes. Among these, cell fitness—how transplanted cells adapt to new microenvironments and maintain functional stability in vivo—is crucial. This study identifies a chemical compound, FPH2, that enhances the fitness of human chondrocytes and the repair of articular cartilage, which is typically nonregenerative. Through drug screening, FPH2 was shown to broadly improve cell performance, especially in maintaining chondrocyte phenotype and enhancing migration. Single-cell transcriptomics indicated that FPH2 induced a super-fit cell state. The mechanism primarily involves the inhibition of carnitine palmitoyl transferase I and the optimization of metabolic homeostasis. In animal models, FPH2-treated human chondrocytes substantially improved cartilage regeneration, demonstrating well-integrated tissue interfaces in rats. In addition, an acellular FPH2-loaded hydrogel proved effective in preventing the onset of osteoarthritis. This research provides a viable and safe method to enhance chondrocyte fitness, offering insights into the self-regulatory mechanisms of cell fitness.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp4408","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp4408","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of cell therapies underscores the importance of understanding fundamental cellular attributes. Among these, cell fitness—how transplanted cells adapt to new microenvironments and maintain functional stability in vivo—is crucial. This study identifies a chemical compound, FPH2, that enhances the fitness of human chondrocytes and the repair of articular cartilage, which is typically nonregenerative. Through drug screening, FPH2 was shown to broadly improve cell performance, especially in maintaining chondrocyte phenotype and enhancing migration. Single-cell transcriptomics indicated that FPH2 induced a super-fit cell state. The mechanism primarily involves the inhibition of carnitine palmitoyl transferase I and the optimization of metabolic homeostasis. In animal models, FPH2-treated human chondrocytes substantially improved cartilage regeneration, demonstrating well-integrated tissue interfaces in rats. In addition, an acellular FPH2-loaded hydrogel proved effective in preventing the onset of osteoarthritis. This research provides a viable and safe method to enhance chondrocyte fitness, offering insights into the self-regulatory mechanisms of cell fitness.
化学编程新陈代谢为软骨再生带来卓越的细胞适应性
细胞疗法的快速发展凸显了了解基本细胞属性的重要性。其中,细胞适应性--移植细胞如何适应新的微环境并在体内保持功能稳定--至关重要。本研究发现了一种化合物 FPH2,它能增强人类软骨细胞的适应性和关节软骨的修复,而关节软骨通常是不可再生的。通过药物筛选,FPH2 被证明能广泛改善细胞性能,尤其是在维持软骨细胞表型和增强迁移方面。单细胞转录组学研究表明,FPH2能诱导超适配细胞状态。其机制主要涉及抑制肉碱棕榈酰转移酶 I 和优化代谢平衡。在动物模型中,经FPH2处理的人类软骨细胞大大改善了软骨再生,在大鼠体内显示出良好的整合组织界面。此外,细胞FPH2-负载水凝胶被证明能有效预防骨关节炎的发生。这项研究提供了一种可行且安全的方法来增强软骨细胞的适应性,为细胞适应性的自我调节机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信