Bin Fan, Weikun Chen, Kaining Li, Qingya Wei, Qian He, Wei Liu, Bigui Zhou, Jun Yuan, Yingping Zou
{"title":"Synergistic adsorption and catalytic effects of Ti3C2Tx/CoO/MoO3 composite on lithium polysulfides for high-performance lithium–sulfur batteries","authors":"Bin Fan, Weikun Chen, Kaining Li, Qingya Wei, Qian He, Wei Liu, Bigui Zhou, Jun Yuan, Yingping Zou","doi":"10.1002/idm2.12178","DOIUrl":null,"url":null,"abstract":"<p>The shuttle effect of lithium polysulfides (LiPSs) and their sluggish kinetic processes lead to rapid capacity fading and poor cycling stability in lithium–sulfur (Li–S) batteries, limiting their commercial viability. This study proposes a functionalized separator with adsorption and synergistic catalysis ability for Li–S batteries. The modified separator comprises Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> sheets, CoO, and MoO<sub>3</sub>. Experimental and theoretical calculations demonstrate that Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/CoO/MoO<sub>3</sub> composite not only effectively inhibits the shuttle effect of LiPSs, ensuring efficient utilization of active materials, but also enhances reversibility and reaction kinetics among LiPSs. The full exposure of active sites in the Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/CoO/MoO<sub>3</sub> composite and the synergistic action of different catalysts enable efficient capture and conversion of LiPSs molecules at the material surface. Besides, the lithium–sulfur batteries with Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/CoO/MoO<sub>3</sub>@PP separator exhibited only a 0.042% capacity decay per cycle at 0.5 C (800 cycles). Moreover, a high areal capacity of 6.85 mAh cm<sup>−2</sup> was achieved at high sulfur loading (7.9 mg cm<sup>−2</sup>) and low electrolyte-to-sulfur ratio (10 μL mg<sup>−1</sup>).</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"726-737"},"PeriodicalIF":24.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12178","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The shuttle effect of lithium polysulfides (LiPSs) and their sluggish kinetic processes lead to rapid capacity fading and poor cycling stability in lithium–sulfur (Li–S) batteries, limiting their commercial viability. This study proposes a functionalized separator with adsorption and synergistic catalysis ability for Li–S batteries. The modified separator comprises Ti3C2Tx sheets, CoO, and MoO3. Experimental and theoretical calculations demonstrate that Ti3C2Tx/CoO/MoO3 composite not only effectively inhibits the shuttle effect of LiPSs, ensuring efficient utilization of active materials, but also enhances reversibility and reaction kinetics among LiPSs. The full exposure of active sites in the Ti3C2Tx/CoO/MoO3 composite and the synergistic action of different catalysts enable efficient capture and conversion of LiPSs molecules at the material surface. Besides, the lithium–sulfur batteries with Ti3C2Tx/CoO/MoO3@PP separator exhibited only a 0.042% capacity decay per cycle at 0.5 C (800 cycles). Moreover, a high areal capacity of 6.85 mAh cm−2 was achieved at high sulfur loading (7.9 mg cm−2) and low electrolyte-to-sulfur ratio (10 μL mg−1).