Junyi Chen, Lin Han, Wu Zhang, Guangying Wan, Zhen Zhang, Xinyong Tao, Tiefeng Liu
{"title":"A robust network binder enables high-performance silicon anode via localized linking by small molecules","authors":"Junyi Chen, Lin Han, Wu Zhang, Guangying Wan, Zhen Zhang, Xinyong Tao, Tiefeng Liu","doi":"10.1002/bte2.20240008","DOIUrl":null,"url":null,"abstract":"<p>The importance of network binder for improving cycling lifespan of silicon (Si) anode needs no further emphasis. However, the linear structure of natural polymer hardly creates a robust network binder. Herein, we propose a facile strategy of establishing a robust network binder by using small molecules of tartaric acid (TA) to locally link sodium carboxymethyl cellulose (CMC). Through hydrogen or covalent bonds, the resultant CMC-TA binder exhibits improved tensile and adhesive properties. The Si anode using CMC-TA binder delivers a satisfactory specific capacity of 2213 mAh g<sup>−1</sup> after 100 cycles at the rate of 0.2 C, with a capacity retention rate of 68.8%. This result has well confirmed the effectiveness of using small molecules to reinforce hydrogen-bonding linking between CMC and between Si particles for a high-performance Si anode.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The importance of network binder for improving cycling lifespan of silicon (Si) anode needs no further emphasis. However, the linear structure of natural polymer hardly creates a robust network binder. Herein, we propose a facile strategy of establishing a robust network binder by using small molecules of tartaric acid (TA) to locally link sodium carboxymethyl cellulose (CMC). Through hydrogen or covalent bonds, the resultant CMC-TA binder exhibits improved tensile and adhesive properties. The Si anode using CMC-TA binder delivers a satisfactory specific capacity of 2213 mAh g−1 after 100 cycles at the rate of 0.2 C, with a capacity retention rate of 68.8%. This result has well confirmed the effectiveness of using small molecules to reinforce hydrogen-bonding linking between CMC and between Si particles for a high-performance Si anode.