{"title":"Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration","authors":"Massoumeh Jabbari Fakhr, Fatemeh Kavakebian, Shima Ababzadeh, Alireza Rezapour","doi":"10.1155/2024/8868411","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Peripheral neuropathy is painful and can cause a considerable decline in quality of life. Surgery and autograft are the current approaches and clinical standards for restoring function after nerve damage. However, they usually result in unacceptable clinical results, so we need modern peripheral nerve defect treatment approaches. Tissue engineering techniques have been developed as a promising approach, but there are some considerations for translational application. Clinical application of novel tissue engineering methods is related to combining the appropriate cell and scaffold type to introduce safe and efficient bioscaffolds. Efficient nerve regeneration occurs by mimicking the extracellular matrix and combining topographical, biochemical, mechanical, and conductive signs via different cells, biomolecules, and polymers. In brief, ideal engineered biomaterial scaffolds will have to cover all characteristics of nerve tissue, such as nerve number, myelin, and axon thickness. Nerve regeneration has a highly sensitive response to its surrounding microenvironment. For designing a suitable construct, matching the regenerative potential of the autograft as the golden standard is essential. This review article examines the newest advancements in peripheral nerve tissue engineering. Specifically, the discussion will focus on incorporating innovative cues, biological modification, biomaterials, techniques, and concepts in this area of research.</p>\n </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2024 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8868411","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8868411","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral neuropathy is painful and can cause a considerable decline in quality of life. Surgery and autograft are the current approaches and clinical standards for restoring function after nerve damage. However, they usually result in unacceptable clinical results, so we need modern peripheral nerve defect treatment approaches. Tissue engineering techniques have been developed as a promising approach, but there are some considerations for translational application. Clinical application of novel tissue engineering methods is related to combining the appropriate cell and scaffold type to introduce safe and efficient bioscaffolds. Efficient nerve regeneration occurs by mimicking the extracellular matrix and combining topographical, biochemical, mechanical, and conductive signs via different cells, biomolecules, and polymers. In brief, ideal engineered biomaterial scaffolds will have to cover all characteristics of nerve tissue, such as nerve number, myelin, and axon thickness. Nerve regeneration has a highly sensitive response to its surrounding microenvironment. For designing a suitable construct, matching the regenerative potential of the autograft as the golden standard is essential. This review article examines the newest advancements in peripheral nerve tissue engineering. Specifically, the discussion will focus on incorporating innovative cues, biological modification, biomaterials, techniques, and concepts in this area of research.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.