Improved uniform error bounds for long-time dynamics of the high-dimensional nonlinear space fractional sine-Gordon equation with weak nonlinearity

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Junqing Jia , Xiaoqing Chi , Xiaoyun Jiang
{"title":"Improved uniform error bounds for long-time dynamics of the high-dimensional nonlinear space fractional sine-Gordon equation with weak nonlinearity","authors":"Junqing Jia ,&nbsp;Xiaoqing Chi ,&nbsp;Xiaoyun Jiang","doi":"10.1016/j.camwa.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we derive the improved uniform error bounds for the long-time dynamics of the <em>d</em>-dimensional <span><math><mo>(</mo><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> nonlinear space fractional sine-Gordon equation (NSFSGE). The nonlinearity strength of the NSFSGE is characterized by <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> where <span><math><mn>0</mn><mo>&lt;</mo><mi>ε</mi><mo>≤</mo><mn>1</mn></math></span> is a dimensionless parameter. The second-order time-splitting method is applied to the temporal discretization and the Fourier pseudo-spectral method is used for the spatial discretization. To obtain the explicit relation between the numerical errors and the parameter <em>ε</em>, we introduce the regularity compensation oscillation technique to the convergence analysis of fractional models. Then we establish the improved uniform error bounds <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> for the semi-discretization scheme and <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> for the full-discretization scheme up to the long time at <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>. Further, we extend the time-splitting Fourier pseudo-spectral method to the complex NSFSGE as well as the oscillatory complex NSFSGE, and the improved uniform error bounds for them are also given. Finally, extensive numerical examples in two-dimension or three-dimension are provided to support the theoretical analysis. The differences in dynamic behaviors between the fractional sine-Gordon equation and classical sine-Gordon equation are also discussed.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004048","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we derive the improved uniform error bounds for the long-time dynamics of the d-dimensional (d=2,3) nonlinear space fractional sine-Gordon equation (NSFSGE). The nonlinearity strength of the NSFSGE is characterized by ε2 where 0<ε1 is a dimensionless parameter. The second-order time-splitting method is applied to the temporal discretization and the Fourier pseudo-spectral method is used for the spatial discretization. To obtain the explicit relation between the numerical errors and the parameter ε, we introduce the regularity compensation oscillation technique to the convergence analysis of fractional models. Then we establish the improved uniform error bounds O(ε2τ2) for the semi-discretization scheme and O(hm+ε2τ2) for the full-discretization scheme up to the long time at O(1/ε2). Further, we extend the time-splitting Fourier pseudo-spectral method to the complex NSFSGE as well as the oscillatory complex NSFSGE, and the improved uniform error bounds for them are also given. Finally, extensive numerical examples in two-dimension or three-dimension are provided to support the theoretical analysis. The differences in dynamic behaviors between the fractional sine-Gordon equation and classical sine-Gordon equation are also discussed.

具有弱非线性的高维非线性空间分数正弦-戈登方程长时动力学的改进均匀误差边界
本文推导了 d 维(d=2,3)非线性空间分数正弦-戈登方程(NSFSGE)长期动力学的改进均匀误差边界。NSFSGE 的非线性强度用 ε2 表征,其中 0<ε≤1 是一个无量纲参数。时间离散化采用二阶时间分割法,空间离散化采用傅立叶伪谱法。为了获得数值误差与参数ε之间的显式关系,我们将正则补偿振荡技术引入到分数模型的收敛分析中。然后,我们建立了半离散化方案的改进均匀误差边界 O(ε2τ2)和全离散化方案的 O(hm+ε2τ2),直到 O(1/ε2)的长时间。此外,我们将时间分割傅立叶伪谱方法扩展到复数 NSFSGE 以及振荡复数 NSFSGE,并给出了它们的改进均匀误差边界。最后,提供了大量二维或三维数值示例来支持理论分析。此外,还讨论了分数正弦-戈登方程与经典正弦-戈登方程在动态行为上的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信