{"title":"Highly enhanced toughness and thermal oxygen aging resistance of PA 6 via novel designed macromolecular antioxidants","authors":"","doi":"10.1016/j.polymer.2024.127614","DOIUrl":null,"url":null,"abstract":"<div><p>Polyamide 6 (PA6) is widely utilized, yet it confronts challenges such as susceptibility to thermal oxidative aging and high sensitivity to notch impact during usage. In addressing these issues, two novel toughening macromolecular antioxidants, 3-(3,5-di-<em>tert</em>-butyl-4-hydroxyphenyl) propionic acid 2-acrylamidoethyl ester styrene copolymer (PAS) and 3-(3,5-di-<em>tert</em>-butyl-4-hydroxyphenyl) propionic acid 2-acrylamidoethyl-<em>N</em>-phenylmaleimide copolymer (PAN), were synthesized via free radical copolymerization. Upon incorporation into PA6, their effects on PA6 performance were investigated. Relative to pure PA6, PA6/PAN and PA6/PAS exhibited significant improvements in fracture elongation, with increases of 136.91 % and 313.83 % respectively, along with notch impact strength enhancements of 18.55 % and 24.89 % respectively. This enhancement can be attributed to PAN and PAS reducing the hydrogen bond density between PA6 molecular chains. Subsequent long-term accelerated thermal aging tests conducted at 150 °C, as well as performance testing of samples before and after aging, revealed that the aging of PA6/PAN and PA6/PAS could be delayed by 4–12 days. The exceptional anti-thermal oxidative aging ability and toughening effect of these two macromolecular antioxidants in PA6 showcase promising prospects for its expanded applications.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032386124009509/pdfft?md5=77b0f7dfae41f45c0f744dc41462ada4&pid=1-s2.0-S0032386124009509-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009509","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polyamide 6 (PA6) is widely utilized, yet it confronts challenges such as susceptibility to thermal oxidative aging and high sensitivity to notch impact during usage. In addressing these issues, two novel toughening macromolecular antioxidants, 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid 2-acrylamidoethyl ester styrene copolymer (PAS) and 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid 2-acrylamidoethyl-N-phenylmaleimide copolymer (PAN), were synthesized via free radical copolymerization. Upon incorporation into PA6, their effects on PA6 performance were investigated. Relative to pure PA6, PA6/PAN and PA6/PAS exhibited significant improvements in fracture elongation, with increases of 136.91 % and 313.83 % respectively, along with notch impact strength enhancements of 18.55 % and 24.89 % respectively. This enhancement can be attributed to PAN and PAS reducing the hydrogen bond density between PA6 molecular chains. Subsequent long-term accelerated thermal aging tests conducted at 150 °C, as well as performance testing of samples before and after aging, revealed that the aging of PA6/PAN and PA6/PAS could be delayed by 4–12 days. The exceptional anti-thermal oxidative aging ability and toughening effect of these two macromolecular antioxidants in PA6 showcase promising prospects for its expanded applications.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.