A sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiaying Wu , Lingyun Yuan , Tianyu Xie , Hui Dai
{"title":"A sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration","authors":"Jiaying Wu ,&nbsp;Lingyun Yuan ,&nbsp;Tianyu Xie ,&nbsp;Hui Dai","doi":"10.1016/j.jksuci.2024.102184","DOIUrl":null,"url":null,"abstract":"<div><p>Sharding is a critical technology for enhancing blockchain scalability. However, existing sharding blockchain protocols suffer from a high cross-shard ratio, high transaction latency, limited throughput enhancement, and high account migration. To address these problems, this paper proposes a sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration. Firstly, we construct a blockchain transaction account graph network structure to analyze transaction account correlations. Secondly, a modularity-based account transaction reconfiguration algorithm and a detailed account reconfiguration process is designed to minimize cross-shard transactions. Finally, we introduce a transaction processing mechanism for account transaction reconfiguration in parallel with block consensus uploading, which reduces the reconfiguration time overhead and system latency. Experimental results demonstrate substantial performance improvements compared to existing shard protocols: up to a 34.7% reduction in cross-shard transaction ratio, at least an 83.2% decrease in transaction latency, at least a 52.7% increase in throughput and a 7.8% decrease in account migration number. The proposed protocol significantly enhances the overall performance and scalability of blockchain, providing robust support for blockchain applications in various fields such as financial services, supply chain management, and industrial Internet of Things. It also enables better support for high-concurrency scenarios and large-scale network environments.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002738/pdfft?md5=107fe417689144e59c75fddd0f5b671f&pid=1-s2.0-S1319157824002738-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002738","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Sharding is a critical technology for enhancing blockchain scalability. However, existing sharding blockchain protocols suffer from a high cross-shard ratio, high transaction latency, limited throughput enhancement, and high account migration. To address these problems, this paper proposes a sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration. Firstly, we construct a blockchain transaction account graph network structure to analyze transaction account correlations. Secondly, a modularity-based account transaction reconfiguration algorithm and a detailed account reconfiguration process is designed to minimize cross-shard transactions. Finally, we introduce a transaction processing mechanism for account transaction reconfiguration in parallel with block consensus uploading, which reduces the reconfiguration time overhead and system latency. Experimental results demonstrate substantial performance improvements compared to existing shard protocols: up to a 34.7% reduction in cross-shard transaction ratio, at least an 83.2% decrease in transaction latency, at least a 52.7% increase in throughput and a 7.8% decrease in account migration number. The proposed protocol significantly enhances the overall performance and scalability of blockchain, providing robust support for blockchain applications in various fields such as financial services, supply chain management, and industrial Internet of Things. It also enables better support for high-concurrency scenarios and large-scale network environments.

通过账户交易重新配置增强可扩展性和性能优化的分片区块链协议
分片是提高区块链可扩展性的关键技术。然而,现有的分片区块链协议存在跨分片比率高、交易延迟高、吞吐量提升有限以及账户迁移率高等问题。针对这些问题,本文提出了一种分片区块链协议,通过账户交易重构来增强可扩展性和优化性能。首先,我们构建了区块链交易账户图网络结构,分析交易账户相关性。其次,我们设计了一种基于模块化的账户交易重构算法和详细的账户重构流程,以尽量减少跨分区交易。最后,我们引入了与区块共识上传并行的账户交易重新配置交易处理机制,从而减少了重新配置时间开销和系统延迟。实验结果表明,与现有的分片协议相比,该协议的性能有了大幅提升:跨分片交易比率降低了 34.7%,交易延迟至少减少了 83.2%,吞吐量至少增加了 52.7%,账户迁移数量减少了 7.8%。所提出的协议大大提高了区块链的整体性能和可扩展性,为金融服务、供应链管理和工业物联网等各个领域的区块链应用提供了强有力的支持。它还能更好地支持高并发场景和大规模网络环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信