{"title":"Enhanced damage segmentation in RC components using pyramid Haar wavelet downsampling and attention U-net","authors":"","doi":"10.1016/j.autcon.2024.105746","DOIUrl":null,"url":null,"abstract":"<div><p>Damage identification in post-earthquake reinforced concrete (RC) structures based on semantic segmentation has been recognized as a promising approach for rapid and non-contact damage localization and quantification. In damage segmentation tasks, damage regions are often set against complex backgrounds, featuring irregular geometric boundaries and intricate textures, posing significant challenges to model segmentation performance. Additionally, the absence of public datasets exacerbates these challenges, hindering advancements in this field. In this paper, a pyramid Haar wavelet downsampling attention UNet (PHA-UNet) semantic segmentation network is proposed, and a database containing 1400 images of damaged RC components (PEDRC-Dataset) with pixel-level annotations is established. In the proposed PHA-UNet, attention mechanisms, multiscale feature fusion, Haar wavelet downsampling, and transfer learning are introduced to address above challenges. Finally, the proposed PHA-UNet is compared with four existing image segmentation architectures on both the Cityspace and the PEDRC-Dataset.</p></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524004825","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Damage identification in post-earthquake reinforced concrete (RC) structures based on semantic segmentation has been recognized as a promising approach for rapid and non-contact damage localization and quantification. In damage segmentation tasks, damage regions are often set against complex backgrounds, featuring irregular geometric boundaries and intricate textures, posing significant challenges to model segmentation performance. Additionally, the absence of public datasets exacerbates these challenges, hindering advancements in this field. In this paper, a pyramid Haar wavelet downsampling attention UNet (PHA-UNet) semantic segmentation network is proposed, and a database containing 1400 images of damaged RC components (PEDRC-Dataset) with pixel-level annotations is established. In the proposed PHA-UNet, attention mechanisms, multiscale feature fusion, Haar wavelet downsampling, and transfer learning are introduced to address above challenges. Finally, the proposed PHA-UNet is compared with four existing image segmentation architectures on both the Cityspace and the PEDRC-Dataset.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.