Deep reinforcement learning-based energy management strategy for fuel cell buses integrating future road information and cabin comfort control

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
{"title":"Deep reinforcement learning-based energy management strategy for fuel cell buses integrating future road information and cabin comfort control","authors":"","doi":"10.1016/j.enconman.2024.119032","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional energy management strategy (EMS) for fuel cell vehicles (FCVs) aims to optimize powertrain energy consumption while ignoring the air conditioning regulation, whereby the overall energy efficiency cannot be optimal. To enhance the cabin-powertrain holistic energy utilization without compromising energy storage system degradation and passenger temperature comfort, this paper proposes a novel energy management paradigm. The comprehensive control of cabin comfort and fuel cell/battery durability is achieved by comprehensively utilizing onboard sensors and vehicle-cloud infrastructure. Specifically, the vehicle energy- and thermal-coupled control problem is formulated by considering energy consumption, component ageing, and cabin’s dynamic thermal model. In addition to regular state space in energy management problems, future road information and environmental temperature are innovatively integrated into the energy management framework. A twin delayed deep deterministic policy gradient algorithm is used to solve the problem to enhance the overall energy efficiency. Simulation results indicate that, compared with rule-based EMSs, the proposed strategy achieves cabin comfort while extending the battery life by at least 3.79 % and reducing the overall vehicle operating cost by at least 2.71 %.</p></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424009737","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional energy management strategy (EMS) for fuel cell vehicles (FCVs) aims to optimize powertrain energy consumption while ignoring the air conditioning regulation, whereby the overall energy efficiency cannot be optimal. To enhance the cabin-powertrain holistic energy utilization without compromising energy storage system degradation and passenger temperature comfort, this paper proposes a novel energy management paradigm. The comprehensive control of cabin comfort and fuel cell/battery durability is achieved by comprehensively utilizing onboard sensors and vehicle-cloud infrastructure. Specifically, the vehicle energy- and thermal-coupled control problem is formulated by considering energy consumption, component ageing, and cabin’s dynamic thermal model. In addition to regular state space in energy management problems, future road information and environmental temperature are innovatively integrated into the energy management framework. A twin delayed deep deterministic policy gradient algorithm is used to solve the problem to enhance the overall energy efficiency. Simulation results indicate that, compared with rule-based EMSs, the proposed strategy achieves cabin comfort while extending the battery life by at least 3.79 % and reducing the overall vehicle operating cost by at least 2.71 %.

基于深度强化学习的燃料电池公交车能源管理策略,集成了未来道路信息和车厢舒适度控制功能
燃料电池汽车(FCV)的传统能源管理策略(EMS)旨在优化动力总成的能耗,而忽略了空调调节,因而无法实现最佳的整体能效。为了在不影响储能系统衰减和乘客温度舒适度的前提下提高座舱-动力总成的整体能量利用率,本文提出了一种新的能量管理模式。通过综合利用车载传感器和车云基础设施,实现了对座舱舒适性和燃料电池/电池耐用性的全面控制。具体来说,通过考虑能源消耗、组件老化和座舱动态热模型,提出了车辆能量和热耦合控制问题。除了能源管理问题中的常规状态空间外,未来道路信息和环境温度也被创新性地集成到了能源管理框架中。采用双延迟深度确定性策略梯度算法来解决该问题,以提高整体能效。仿真结果表明,与基于规则的 EMS 相比,所提出的策略在实现车厢舒适度的同时,还能延长至少 3.79 % 的电池寿命,并降低至少 2.71 % 的整体车辆运营成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信