Riadh Al Dwood , Qingbang Meng , AL-Wesabi Ibrahim , Wahib Ali Yahya , Ahmed .G. Alareqi , Ghmdan AL-Khulaidi
{"title":"A novel hybrid ANN-GB-LR model for predicting oil and gas production rate","authors":"Riadh Al Dwood , Qingbang Meng , AL-Wesabi Ibrahim , Wahib Ali Yahya , Ahmed .G. Alareqi , Ghmdan AL-Khulaidi","doi":"10.1016/j.flowmeasinst.2024.102690","DOIUrl":null,"url":null,"abstract":"<div><p>The Oil and Gas Production Rate (OGPR) is one of the most significant processes that play an essential role in the oil industry. Predicting OGPR is critical for effective reservoir management and enhancing oil recovery. Traditional methods (TMs) and numerical simulations (NS) often struggle to process and analyze nonlinear, complex, and massive datasets. To avoid these challenges, artificial intelligence (AI) techniques and machine learning (ML) models have been proposed as an alternative solution due to their high efficiency and rapidity in handling complex data. In this study, a new hybrid model is developed by combining the strengths of Artificial Neural Networks (ANN) and Gradient Boosting (GB), using Linear Regression (LR) as a meta-model by stacking technique. It captures nonlinear relationships effectively and manages outliers, enhancing prediction accuracy. The novelty of this study lies in the hybrid ANN-GB-LR model's ability to integrate various machine learning techniques into a robust framework, leveraging the high learning capacity of ANN, the robust handling of outliers by GB, and the straightforward interpretability of LR. This creative combination handles the limitations of individual models and enhances the general predictive performance. The model was trained and tested using actual field data from the Halewah field in Yemen. Evaluation metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R<sup>2</sup>), were utilized to evaluate and compare the hybrid model with other ML models: Random Forest (RF), XGBoost (XGB), LR, Light Gradient Boosting Machine (LGBM), GB, and K-nearest neighbors (KNN). The hybrid ANN-GB-LR model achieved superior results, with an R<sup>2</sup> of 0.998, an RMSE of 11.06 for oil flow rate predictions, and an R<sup>2</sup> of 0.98 and an RMSE of 172.15 for gas flow rate predictions. These results significantly surpass the other models, demonstrating the hybrid model's outstanding ability to capture complex data and provide accurate predictions. The ANN-GB-LR model surpasses Traditional Methods in predicting OGPRs. It shows a strong and reliable tool for optimizing reservoir management. This study establishes a new standard for predictive modeling in the oil industry, providing a framework for future research to apply hybrid models in handling complex datasets.</p></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102690"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001705","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Oil and Gas Production Rate (OGPR) is one of the most significant processes that play an essential role in the oil industry. Predicting OGPR is critical for effective reservoir management and enhancing oil recovery. Traditional methods (TMs) and numerical simulations (NS) often struggle to process and analyze nonlinear, complex, and massive datasets. To avoid these challenges, artificial intelligence (AI) techniques and machine learning (ML) models have been proposed as an alternative solution due to their high efficiency and rapidity in handling complex data. In this study, a new hybrid model is developed by combining the strengths of Artificial Neural Networks (ANN) and Gradient Boosting (GB), using Linear Regression (LR) as a meta-model by stacking technique. It captures nonlinear relationships effectively and manages outliers, enhancing prediction accuracy. The novelty of this study lies in the hybrid ANN-GB-LR model's ability to integrate various machine learning techniques into a robust framework, leveraging the high learning capacity of ANN, the robust handling of outliers by GB, and the straightforward interpretability of LR. This creative combination handles the limitations of individual models and enhances the general predictive performance. The model was trained and tested using actual field data from the Halewah field in Yemen. Evaluation metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2), were utilized to evaluate and compare the hybrid model with other ML models: Random Forest (RF), XGBoost (XGB), LR, Light Gradient Boosting Machine (LGBM), GB, and K-nearest neighbors (KNN). The hybrid ANN-GB-LR model achieved superior results, with an R2 of 0.998, an RMSE of 11.06 for oil flow rate predictions, and an R2 of 0.98 and an RMSE of 172.15 for gas flow rate predictions. These results significantly surpass the other models, demonstrating the hybrid model's outstanding ability to capture complex data and provide accurate predictions. The ANN-GB-LR model surpasses Traditional Methods in predicting OGPRs. It shows a strong and reliable tool for optimizing reservoir management. This study establishes a new standard for predictive modeling in the oil industry, providing a framework for future research to apply hybrid models in handling complex datasets.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.