Yinqin Li , Winfried Sickel , Dachun Yang , Wen Yuan
{"title":"Wavelet and Fourier analytic characterizations of pointwise multipliers of Besov spaces Bp,ps(Rn) with 0 < p ≤ 1","authors":"Yinqin Li , Winfried Sickel , Dachun Yang , Wen Yuan","doi":"10.1016/j.jfa.2024.110654","DOIUrl":null,"url":null,"abstract":"<div><p>For any <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><mi>s</mi><mo>∈</mo><mi>R</mi></math></span>, the authors prove two types of characterizations of the pointwise multiplier space <span><math><mi>M</mi><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> of the Besov space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. One type is based on wavelet analysis and is an extension of a well-known argument of Yves Meyer. The other type works with Fourier analytic terms. As an application of the above two types of characterizations, the authors further obtain a characterization of bounded functions in the uniform space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>p</mi><mo>,</mo><mrow><mi>unif</mi></mrow></mrow><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> via Haar wavelets in the critical index <span><math><mi>τ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110654"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003422/pdfft?md5=ae5d838a01a88bd82da5efd013bbd9f3&pid=1-s2.0-S0022123624003422-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003422","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For any and , the authors prove two types of characterizations of the pointwise multiplier space of the Besov space . One type is based on wavelet analysis and is an extension of a well-known argument of Yves Meyer. The other type works with Fourier analytic terms. As an application of the above two types of characterizations, the authors further obtain a characterization of bounded functions in the uniform space via Haar wavelets in the critical index .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis