Low-emissions hydrogen from MCH dehydrogenation: Integration with LNG regasification

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
{"title":"Low-emissions hydrogen from MCH dehydrogenation: Integration with LNG regasification","authors":"","doi":"10.1016/j.enconman.2024.119012","DOIUrl":null,"url":null,"abstract":"<div><p>Methylcyclohexane (MCH) is a promising organic hydride carrier for hydrogen transport and storage. Recovering hydrogen from MCH is an energy intensive process. An innovative idea of integrating this process with liquified natural gas (LNG) regasification is proposed in this study and demonstrated via modelling and simulation to substantially reduce external energy use. The synergistic benefits are twofold. In addition to providing a cold energy source for an effective high recovery cryogenic flash separation, the organic Rankine cycle based electrical power generation potential from LNG cold energy is fully exploited to reduce/eliminate external electricity demand for hydrogen compression to the high (end use) pressure. The results is a major reduction in carbon dioxide emissions. The proposed design for an integrated LNG-H<sub>2</sub> <!-->terminal can supply (1) 99.99 mol% pure hydrogen to a Combined Cycle Gas Turbine (CCGT) power plant and (2) commercial-grade natural gas to a gas-grid, both at the desired pressures and temperatures. Subsequently, rigorous simulation-based optimization was performed to minimize external energy inputs.<!--> <!-->A case study with 100 tph MCH and 100 tph LNG showed that integrating regasification with dehydrogenation produced 6.2 tph of hydrogen while gasifying LNG with a net power generation of 310 kW and a hydrogen recovery cost of 0.282 $/kg H<sub>2</sub>. Up to 7.3 tonnes of hydrogen can be produced per 100 tonnes of LNG without the use of external power. On the other hand, using external power, up to 11.3 tonnes of hydrogen can be produced per 100 tonnes of LNG without any external refrigeration. Overall, the superstructure proposed in this manuscript provides a generic initial approach for future MCH hydrogen supply chain projects, when considering integrations with LNG regasification plants.</p></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424009531","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Methylcyclohexane (MCH) is a promising organic hydride carrier for hydrogen transport and storage. Recovering hydrogen from MCH is an energy intensive process. An innovative idea of integrating this process with liquified natural gas (LNG) regasification is proposed in this study and demonstrated via modelling and simulation to substantially reduce external energy use. The synergistic benefits are twofold. In addition to providing a cold energy source for an effective high recovery cryogenic flash separation, the organic Rankine cycle based electrical power generation potential from LNG cold energy is fully exploited to reduce/eliminate external electricity demand for hydrogen compression to the high (end use) pressure. The results is a major reduction in carbon dioxide emissions. The proposed design for an integrated LNG-H2 terminal can supply (1) 99.99 mol% pure hydrogen to a Combined Cycle Gas Turbine (CCGT) power plant and (2) commercial-grade natural gas to a gas-grid, both at the desired pressures and temperatures. Subsequently, rigorous simulation-based optimization was performed to minimize external energy inputs. A case study with 100 tph MCH and 100 tph LNG showed that integrating regasification with dehydrogenation produced 6.2 tph of hydrogen while gasifying LNG with a net power generation of 310 kW and a hydrogen recovery cost of 0.282 $/kg H2. Up to 7.3 tonnes of hydrogen can be produced per 100 tonnes of LNG without the use of external power. On the other hand, using external power, up to 11.3 tonnes of hydrogen can be produced per 100 tonnes of LNG without any external refrigeration. Overall, the superstructure proposed in this manuscript provides a generic initial approach for future MCH hydrogen supply chain projects, when considering integrations with LNG regasification plants.

Abstract Image

MCH 脱氢产生的低排放氢气:与液化天然气再气化相结合
甲基环己烷(MCH)是一种很有前途的有机氢化物载体,可用于氢的运输和储存。从 MCH 中回收氢气是一个能源密集型过程。本研究提出了将这一工艺与液化天然气(LNG)再气化相结合的创新想法,并通过建模和模拟演示了这一方法,从而大大减少了外部能源的使用。协同效益是双重的。除了为有效的高回收率低温闪蒸分离提供冷能源外,还充分利用了基于有机郎肯循环的液化天然气冷能发电潜力,以减少/消除将氢气压缩至高压(最终用途)的外部电力需求。其结果是大大减少了二氧化碳排放量。所提出的 LNG-H2 一体化终端设计方案可以在所需的压力和温度下,向联合循环燃气轮机(CCGT)发电厂供应 (1) 99.99 mol% 的纯氢气,以及 (2) 向天然气电网供应商业级天然气。随后,进行了严格的模拟优化,以尽量减少外部能源输入。对 100 吨/小时 MCH 和 100 吨/小时 LNG 进行的案例研究表明,将再气化与脱氢整合在一起可生产 6.2 吨/小时氢气,同时气化 LNG,净发电量为 310 千瓦,氢气回收成本为 0.282 美元/千克 H2。在不使用外部动力的情况下,每 100 吨液化天然气最多可生产 7.3 吨氢气。另一方面,如果使用外部电源,每 100 吨液化天然气最多可生产 11.3 吨氢气,而无需任何外部制冷。总之,在考虑与液化天然气再气化工厂整合时,本手稿中提出的上层建筑为未来的 MCH 氢气供应链项目提供了通用的初步方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信