{"title":"Dynamics for a nonlocal diffusive SIR epidemic model with double free boundaries","authors":"Qianying Zhang , Mingxin Wang","doi":"10.1016/j.nonrwa.2024.104208","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study an SIR epidemic model with nonlocal diffusion and double free boundaries, which can be used to describe a class of biological phenomena: the depletion of native resources by all individuals, the infected individuals do not lose their fertility completely, the recovered individuals are immune and no longer infected, the infected and recovered individuals spread along the same free boundary. We first investigate the existence and uniqueness of global solution, long time behaviors and some sufficient conditions for spreading and vanishing. Then we estimate the spreading speed and derive that accelerated spreading could happen when the kernel function does not satisfy a threshold condition.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study an SIR epidemic model with nonlocal diffusion and double free boundaries, which can be used to describe a class of biological phenomena: the depletion of native resources by all individuals, the infected individuals do not lose their fertility completely, the recovered individuals are immune and no longer infected, the infected and recovered individuals spread along the same free boundary. We first investigate the existence and uniqueness of global solution, long time behaviors and some sufficient conditions for spreading and vanishing. Then we estimate the spreading speed and derive that accelerated spreading could happen when the kernel function does not satisfy a threshold condition.
本文研究了一个具有非局部扩散和双重自由边界的 SIR 流行病模型,该模型可用于描述一类生物现象:所有个体的本地资源耗尽,受感染个体不会完全丧失生育能力,康复个体具有免疫力且不再受感染,受感染个体和康复个体沿同一自由边界扩散。我们首先研究了全局解的存在性和唯一性、长时间行为以及扩散和消失的一些充分条件。然后,我们估算了传播速度,并推导出当核函数不满足阈值条件时,可能会发生加速传播。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.