{"title":"Energy savings and emissions reduction of BEVs at an isolated complex intersection","authors":"","doi":"10.1016/j.trd.2024.104403","DOIUrl":null,"url":null,"abstract":"<div><p>Improving urban dwellers quality of life requires mitigating traffic congestion, minimizing waiting delays, and reducing fuel wastage and associated toxic air pollutants. Battery-electric vehicles (BEVs) are envisioned as the best option, thanks to zero exhaust emissions and regenerative braking. BEVs can be human-driven or autonomous and will co-exist with internal combustion engine vehicles (ICEVs) for years. BEVs can help at complex intersections where traffic is saturated. However, their benefits can be reduced by poor intersection management (IM) strategies that coordinate mixed traffic configurations inefficiently. This paper studies energy savings and emissions reduction using BEVs mixed with human-driven ICEVs under eight relevant IM approaches. It shows that adding BEVs has impacts on throughput, energy consumption, waiting delays, and tail-pipe emissions that depend on the specific IM approach used. Thus, this study provides the information needed to support an optimal choice of IM approaches considering the emerging trend towards electrical mobility.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1361920924003602/pdfft?md5=b6a8bb284ba3b20d8741d5ab796e7153&pid=1-s2.0-S1361920924003602-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003602","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Improving urban dwellers quality of life requires mitigating traffic congestion, minimizing waiting delays, and reducing fuel wastage and associated toxic air pollutants. Battery-electric vehicles (BEVs) are envisioned as the best option, thanks to zero exhaust emissions and regenerative braking. BEVs can be human-driven or autonomous and will co-exist with internal combustion engine vehicles (ICEVs) for years. BEVs can help at complex intersections where traffic is saturated. However, their benefits can be reduced by poor intersection management (IM) strategies that coordinate mixed traffic configurations inefficiently. This paper studies energy savings and emissions reduction using BEVs mixed with human-driven ICEVs under eight relevant IM approaches. It shows that adding BEVs has impacts on throughput, energy consumption, waiting delays, and tail-pipe emissions that depend on the specific IM approach used. Thus, this study provides the information needed to support an optimal choice of IM approaches considering the emerging trend towards electrical mobility.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.