An experimental study on the motion-structure coupled characteristics of multi-linked floating unit offshore structure with two different connection conditions

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE
Kangsu Lee , Kichan Sim
{"title":"An experimental study on the motion-structure coupled characteristics of multi-linked floating unit offshore structure with two different connection conditions","authors":"Kangsu Lee ,&nbsp;Kichan Sim","doi":"10.1016/j.ijnaoe.2024.100614","DOIUrl":null,"url":null,"abstract":"<div><p>With the recent intensification of climate change due to global warming, the importance of renewable energy has been highlighted, emphasizing the need for renewable energy development. In the case of renewable energy power generation, it is installed and operated on a large scale to meet energy demand, economic efficiency, and optimize local resources. Therefore, the number of cases of installation on water and sea with high space utilization is gradually increasing. When operating large-scale power systems, conservative design and review are necessary because damage to the structures can cause cascading failures, leading to major accidents. In particular, for photovoltaic systems, the method of expansion by connecting individual unit structures is commonly used. Therefore, it is necessary to analyze the characteristics of the unit structures and the connection methods. In this study, a fluid-structure coupled analysis was performed on the unit structures of a multi-linked floating offshore structures, which can be large-scale expansion, developed by the Korea Research Institute of Ships and Ocean Engineering. The characteristics were analyzed based on the connection method. The analysis results showed that when the connection method was a hinged condition, the pitch motion increased compared to the fixed condition, but since the peak occurred at a high frequency with a 4-s period, it is advantageous to avoid resonance. In particular, it was confirmed that the maximum stress was reduced by approximately three times, which is beneficial for structural integrity. Additionally, it was found that as the stress distribution moved from the center to the edges, it is also advantageous in terms of maintenance. In addition, the numerical method of the multi-linked floating offshore structures and the characteristics of hinged condition were verified through model tests.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100614"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000335/pdfft?md5=ebf34e2805fbb616f6f32c57256394b9&pid=1-s2.0-S2092678224000335-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000335","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

With the recent intensification of climate change due to global warming, the importance of renewable energy has been highlighted, emphasizing the need for renewable energy development. In the case of renewable energy power generation, it is installed and operated on a large scale to meet energy demand, economic efficiency, and optimize local resources. Therefore, the number of cases of installation on water and sea with high space utilization is gradually increasing. When operating large-scale power systems, conservative design and review are necessary because damage to the structures can cause cascading failures, leading to major accidents. In particular, for photovoltaic systems, the method of expansion by connecting individual unit structures is commonly used. Therefore, it is necessary to analyze the characteristics of the unit structures and the connection methods. In this study, a fluid-structure coupled analysis was performed on the unit structures of a multi-linked floating offshore structures, which can be large-scale expansion, developed by the Korea Research Institute of Ships and Ocean Engineering. The characteristics were analyzed based on the connection method. The analysis results showed that when the connection method was a hinged condition, the pitch motion increased compared to the fixed condition, but since the peak occurred at a high frequency with a 4-s period, it is advantageous to avoid resonance. In particular, it was confirmed that the maximum stress was reduced by approximately three times, which is beneficial for structural integrity. Additionally, it was found that as the stress distribution moved from the center to the edges, it is also advantageous in terms of maintenance. In addition, the numerical method of the multi-linked floating offshore structures and the characteristics of hinged condition were verified through model tests.

两种不同连接条件下多连接浮动单元海上结构的运动-结构耦合特性实验研究
近来,全球变暖导致气候变化加剧,可再生能源的重要性凸显,强调了可再生能源发展的必要性。就可再生能源发电而言,其大规模安装和运行是为了满足能源需求,提高经济效益,优化当地资源。因此,空间利用率高的水上和海上安装案例逐渐增多。在运行大型电力系统时,必须进行保守的设计和审查,因为结构的损坏可能会引起连锁故障,导致重大事故。特别是光伏系统,通常采用连接单个单元结构进行扩展的方法。因此,有必要对单元结构的特性和连接方法进行分析。本研究对韩国船舶与海洋工程研究院开发的可大规模扩展的多连接浮式海上结构的单元结构进行了流固耦合分析。根据连接方法对其特性进行了分析。分析结果表明,当连接方式为铰接状态时,俯仰运动比固定状态增加,但由于峰值出现在 4 秒周期的高频率上,因此有利于避免共振。特别是,经证实,最大应力降低了约三倍,这有利于结构的完整性。此外,研究还发现,当应力分布从中心向边缘移动时,也有利于维护。此外,还通过模型试验验证了多连杆浮式近海结构的数值方法和铰链状态的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信