Rigidity of Lyapunov exponents for geodesic flows

IF 2.4 2区 数学 Q1 MATHEMATICS
Nestor Nina Zarate , Sergio Romaña
{"title":"Rigidity of Lyapunov exponents for geodesic flows","authors":"Nestor Nina Zarate ,&nbsp;Sergio Romaña","doi":"10.1016/j.jde.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study rigidity problems between Lyapunov exponents along periodic orbits and geometric structures. More specifically, we prove that for a surface <em>M</em> without focal points, if the value of the Lyapunov exponents is constant over all periodic orbits, then <em>M</em> is the flat 2-torus or a surface of constant negative curvature. We obtain the same result for the case of Anosov geodesic flow for surface, which generalizes C. Butler's result <span><span>[5]</span></span> in dimension two. Using completely different techniques, we also prove an extension of <span><span>[5]</span></span> to the finite volume case, where the value of the Lyapunov exponents along all periodic orbits is constant, being the maximum or minimum possible.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400576X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study rigidity problems between Lyapunov exponents along periodic orbits and geometric structures. More specifically, we prove that for a surface M without focal points, if the value of the Lyapunov exponents is constant over all periodic orbits, then M is the flat 2-torus or a surface of constant negative curvature. We obtain the same result for the case of Anosov geodesic flow for surface, which generalizes C. Butler's result [5] in dimension two. Using completely different techniques, we also prove an extension of [5] to the finite volume case, where the value of the Lyapunov exponents along all periodic orbits is constant, being the maximum or minimum possible.

大地流 Lyapunov 指数的刚性
本文研究了沿周期轨道的 Lyapunov 指数与几何结构之间的刚性问题。更具体地说,我们证明了对于一个没有焦点的曲面 M,如果在所有周期轨道上的 Lyapunov 指数值都是常数,那么 M 就是平坦的 2-Torus 或恒定负曲率曲面。对于曲面的阿诺索夫大地流,我们也得到了同样的结果,这概括了 C. 巴特勒在二维中的结果[5]。利用完全不同的技术,我们还证明了 [5] 在有限体积情况下的扩展,在这种情况下,沿所有周期轨道的 Lyapunov 指数值都是常数,即可能的最大值或最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信