{"title":"On inverse problems in multi-population aggregation models","authors":"Yuhan Li, Hongyu Liu, Catharine W.K. Lo","doi":"10.1016/j.jde.2024.08.075","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on inverse problems arising in studying multi-population aggregations. The goal is to reconstruct the diffusion coefficient, advection coefficient, and interaction kernels of the aggregation system, which characterize the dynamics of different populations. In the theoretical analysis of the physical setup, it is crucial to ensure non-negativity of solutions. To address this, we employ the high-order variation method and introduce modifications to the systems. Additionally, we propose a novel approach called transformative asymptotic technique that enables the recovery of the diffusion coefficient preceding the Laplace operator, presenting a pioneering method for this type of problems. Through these techniques, we offer comprehensive insights into the unique identifiability aspect of inverse problems associated with multi-population aggregation models.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005643","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on inverse problems arising in studying multi-population aggregations. The goal is to reconstruct the diffusion coefficient, advection coefficient, and interaction kernels of the aggregation system, which characterize the dynamics of different populations. In the theoretical analysis of the physical setup, it is crucial to ensure non-negativity of solutions. To address this, we employ the high-order variation method and introduce modifications to the systems. Additionally, we propose a novel approach called transformative asymptotic technique that enables the recovery of the diffusion coefficient preceding the Laplace operator, presenting a pioneering method for this type of problems. Through these techniques, we offer comprehensive insights into the unique identifiability aspect of inverse problems associated with multi-population aggregation models.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics