{"title":"On the global well-posedness for the Fokas-Lenells equation on the line","authors":"Qiaoyuan Cheng , Engui Fan , Manwai Yuen","doi":"10.1016/j.jde.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain the global well-posedness to the Cauchy problem of the Fokas-Lenells (FL) equation on the line without the small-norm assumption on initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Our main technical tool is the inverse scattering transform method based on the representation of a Riemann-Hilbert (RH) problem associated with the above Cauchy problem. The existence and the uniqueness of the RH problem is shown via a general vanishing lemma. By representing the solutions of the RH problem via the Cauchy integral protection and the reflection coefficients, the reconstruction formula is used to obtain a unique local solution of the FL equation. Further, the eigenfunctions and the reflection coefficients are shown Lipschitz continuous with respect to initial data, which provides a prior estimate of the solution to the FL equation. Based on the local solution and the uniformly prior estimate, we construct a unique global solution in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to the FL equation.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005813","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain the global well-posedness to the Cauchy problem of the Fokas-Lenells (FL) equation on the line without the small-norm assumption on initial data . Our main technical tool is the inverse scattering transform method based on the representation of a Riemann-Hilbert (RH) problem associated with the above Cauchy problem. The existence and the uniqueness of the RH problem is shown via a general vanishing lemma. By representing the solutions of the RH problem via the Cauchy integral protection and the reflection coefficients, the reconstruction formula is used to obtain a unique local solution of the FL equation. Further, the eigenfunctions and the reflection coefficients are shown Lipschitz continuous with respect to initial data, which provides a prior estimate of the solution to the FL equation. Based on the local solution and the uniformly prior estimate, we construct a unique global solution in to the FL equation.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics