Xuanrui Cheng , Ming Gao , Wuxiang Huai , Yichun Niu , Li Sheng
{"title":"Fixed-time active fault-tolerant control for dynamical systems with intermittent faults and unknown disturbances","authors":"Xuanrui Cheng , Ming Gao , Wuxiang Huai , Yichun Niu , Li Sheng","doi":"10.1016/j.amc.2024.129054","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the problem of fixed-time active fault-tolerant control is investigated for dynamical linear systems with intermittent faults and unknown disturbances. Unlike traditional active fault-tolerant control, fixed-time control is taken into account in this article since intermittent faults appear and disappear within a certain period of time. The entire active fault-tolerant control framework is composed of fault detection, fault isolation, fault and state estimation as well as the reconfigurable controller. Using the homogeneity-based observers, states and faults are well estimated and a fault diagnosis scheme is proposed for the sake of detecting and isolating intermittent faults in a fixed time. The fault-tolerant controller, which provides global practical fixed-time stability of the closed-loop system, has two switching states corresponding to the appearance and disappearance of intermittent faults. As a consequence, intermittent faults are compensated via the designed active fault-tolerant control method and the system reaches practical stability with the entire convergence time bounded in a fixed time. Finally, two examples are exploited to demonstrate the effectiveness of theoretical results.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005150","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the problem of fixed-time active fault-tolerant control is investigated for dynamical linear systems with intermittent faults and unknown disturbances. Unlike traditional active fault-tolerant control, fixed-time control is taken into account in this article since intermittent faults appear and disappear within a certain period of time. The entire active fault-tolerant control framework is composed of fault detection, fault isolation, fault and state estimation as well as the reconfigurable controller. Using the homogeneity-based observers, states and faults are well estimated and a fault diagnosis scheme is proposed for the sake of detecting and isolating intermittent faults in a fixed time. The fault-tolerant controller, which provides global practical fixed-time stability of the closed-loop system, has two switching states corresponding to the appearance and disappearance of intermittent faults. As a consequence, intermittent faults are compensated via the designed active fault-tolerant control method and the system reaches practical stability with the entire convergence time bounded in a fixed time. Finally, two examples are exploited to demonstrate the effectiveness of theoretical results.