A novel design of a MEMS resonant accelerometer with adjustable sensitivity

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"A novel design of a MEMS resonant accelerometer with adjustable sensitivity","authors":"","doi":"10.1016/j.sna.2024.115859","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the design and experimental evaluation of a silicon micro-machined resonant accelerometer featuring adjustable sensitivity. By integrating an electrostatic tuning module into the fundamental accelerometer structure, dynamic sensitivity adjustment becomes feasible, leveraging the softening effect of electrostatic negative stiffness to optimize range, noise, and bandwidth. Notably, the electrostatic tuning module integrates seamlessly with the core accelerometer structure, minimizing structural alterations. Through theoretical analysis and finite element simulation of the electrostatic negative stiffness principle, we have designed a novel accelerometer with adjustable sensitivity, which can enhance the sensitivity and reduces the bias-instability of the accelerometer with a relatively small adjustment voltage, without increasing structural complexity. The performance of the accelerometer was assessed through open-loop, closed-loop, and dynamic experiments, revealing that sensitivity increased from 843 Hz/g to 2611 Hz/g within a linear range of ±1 g when employing a sensitivity-enhancing bias voltage of 9 V. Moreover, the bias-instability is lowered down from 17.3 μg to 6.8 μg. This design offers a promising avenue for sensitivity tuning in MEMS resonant accelerometers.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008537","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design and experimental evaluation of a silicon micro-machined resonant accelerometer featuring adjustable sensitivity. By integrating an electrostatic tuning module into the fundamental accelerometer structure, dynamic sensitivity adjustment becomes feasible, leveraging the softening effect of electrostatic negative stiffness to optimize range, noise, and bandwidth. Notably, the electrostatic tuning module integrates seamlessly with the core accelerometer structure, minimizing structural alterations. Through theoretical analysis and finite element simulation of the electrostatic negative stiffness principle, we have designed a novel accelerometer with adjustable sensitivity, which can enhance the sensitivity and reduces the bias-instability of the accelerometer with a relatively small adjustment voltage, without increasing structural complexity. The performance of the accelerometer was assessed through open-loop, closed-loop, and dynamic experiments, revealing that sensitivity increased from 843 Hz/g to 2611 Hz/g within a linear range of ±1 g when employing a sensitivity-enhancing bias voltage of 9 V. Moreover, the bias-instability is lowered down from 17.3 μg to 6.8 μg. This design offers a promising avenue for sensitivity tuning in MEMS resonant accelerometers.

灵敏度可调的新型 MEMS 谐振加速度计设计
本文介绍了具有灵敏度可调功能的硅微型机械谐振加速度计的设计和实验评估。通过将静电调谐模块集成到基本加速度计结构中,可以利用静电负稳态的软化效应来优化量程、噪声和带宽,从而实现动态灵敏度调节。值得注意的是,静电调谐模块与加速度计核心结构无缝集成,最大限度地减少了结构改动。通过对静电负稳态原理的理论分析和有限元模拟,我们设计出了一种新型的灵敏度可调式加速度计,只需相对较小的调节电压,就能提高加速度计的灵敏度并降低偏置不稳定性,同时不会增加结构的复杂性。通过开环、闭环和动态实验对加速度计的性能进行了评估,结果表明,当采用 9 V 灵敏度增强偏置电压时,在 ±1 g 的线性范围内,灵敏度从 843 Hz/g 提高到 2611 Hz/g。此外,偏压不稳定性也从 17.3 μg 降低到 6.8 μg。这种设计为微机电系统谐振加速度计的灵敏度调整提供了一条很有前景的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信