Generalization and analytic exploration of soliton solutions for nonlinear evolution equations via a novel symbolic approach in fluids and nonlinear sciences

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Brij Mohan , Sachin Kumar
{"title":"Generalization and analytic exploration of soliton solutions for nonlinear evolution equations via a novel symbolic approach in fluids and nonlinear sciences","authors":"Brij Mohan ,&nbsp;Sachin Kumar","doi":"10.1016/j.cjph.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we analyze the new generalized soliton solutions for the nonlinear partial differential equations with a novel symbolic bilinear technique. The proposed approach constructs the soliton solutions depending on the arbitrary parameters, which generalizes the soliton solutions with these additional parameters. Examining phase shifts and their dependence on the parameters influences how solitons collide, merge, or pass through each other, which is essential for the nonlinear analysis of solitons. Using the proposed technique, we examine the well-known (1+1)-dimensional Korteweg–de Vries (KdV) and (2+1)-dimensional Kadomtsev–Petviashvili (KP) equations with a comparative analysis of soliton solutions in the Hirota technique. We construct the generalized solitons solutions for both examined equations up to the third order, providing a better understanding of formed solitons with arbitrary parameter choices. The Cole-Hopf transformations are used to construct the bilinear form in the auxiliary function using Hirota’s <span><math><mi>D</mi></math></span>-operators for both investigated KdV and KP equations It discusses the phase shift depending on parameters and compares it to the phase shift in Hirota’s soliton solutions. We utilize <em>Mathematica</em>, a computer algebra system, to obtain the generalized solitons and analyze the dynamic behavior of the obtained solutions by finding the values for the parameters and the relationships among them. Solitons are localized waves that appear in different fields of nonlinear sciences, such as oceanography, plasmas, fluid mechanics, water engineering, optical fibers, and other sciences.</p></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003496","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we analyze the new generalized soliton solutions for the nonlinear partial differential equations with a novel symbolic bilinear technique. The proposed approach constructs the soliton solutions depending on the arbitrary parameters, which generalizes the soliton solutions with these additional parameters. Examining phase shifts and their dependence on the parameters influences how solitons collide, merge, or pass through each other, which is essential for the nonlinear analysis of solitons. Using the proposed technique, we examine the well-known (1+1)-dimensional Korteweg–de Vries (KdV) and (2+1)-dimensional Kadomtsev–Petviashvili (KP) equations with a comparative analysis of soliton solutions in the Hirota technique. We construct the generalized solitons solutions for both examined equations up to the third order, providing a better understanding of formed solitons with arbitrary parameter choices. The Cole-Hopf transformations are used to construct the bilinear form in the auxiliary function using Hirota’s D-operators for both investigated KdV and KP equations It discusses the phase shift depending on parameters and compares it to the phase shift in Hirota’s soliton solutions. We utilize Mathematica, a computer algebra system, to obtain the generalized solitons and analyze the dynamic behavior of the obtained solutions by finding the values for the parameters and the relationships among them. Solitons are localized waves that appear in different fields of nonlinear sciences, such as oceanography, plasmas, fluid mechanics, water engineering, optical fibers, and other sciences.

Abstract Image

通过流体和非线性科学中的一种新符号方法,对非线性演化方程的孤子解进行概括和分析探索
在这项工作中,我们用一种新颖的符号双线性技术分析了非线性偏微分方程的新广义孤子解。所提出的方法可根据任意参数构建孤子解,并利用这些附加参数对孤子解进行广义化。研究相移及其对参数的依赖会影响孤子如何相互碰撞、合并或穿过,这对孤子的非线性分析至关重要。利用所提出的技术,我们研究了著名的 (1+1)-dimensional Korteweg-de Vries (KdV) 和 (2+1)-dimensional Kadomtsev-Petviashvili (KP) 方程,并对广田技术中的孤子解进行了比较分析。我们为这两个被研究的方程构建了广义孤子解,直至三阶,从而更好地理解了任意参数选择下形成的孤子。我们使用科尔-霍普夫变换来构建辅助函数中的双线性形式,并使用 Hirota 的 D-operators 来处理所研究的 KdV 和 KP 方程。我们利用计算机代数系统 Mathematica 来获得广义孤子,并通过寻找参数值及其之间的关系来分析所获得解的动态行为。孤子是一种局部波,出现在非线性科学的不同领域,如海洋学、等离子体、流体力学、水利工程、光纤和其他科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信