{"title":"Machine learning in materials research: Developments over the last decade and challenges for the future","authors":"Anubhav Jain","doi":"10.1016/j.cossms.2024.101189","DOIUrl":null,"url":null,"abstract":"<div><p>The number of studies that apply machine learning (ML) to materials science has been growing at a rate of approximately 1.67 times per year over the past decade. In this review, I examine this growth in various contexts. First, I present an analysis of the most commonly used tools (software, databases, materials science methods, and ML methods) used within papers that apply ML to materials science. The analysis demonstrates that despite the growth of deep learning techniques, the use of classical machine learning is still dominant as a whole. It also demonstrates how new research can effectively build upon past research, particular in the domain of ML models trained on density functional theory calculation data. Next, I present the progression of best scores as a function of time on the matbench materials science benchmark for formation enthalpy prediction. In particular, a dramatic improvement of 7 times reduction in error is obtained when progressing from feature-based methods that use conventional ML (random forest, support vector regression, <em>etc.</em>) to the use of graph neural network techniques. Finally, I provide views on future challenges and opportunities, focusing on data size and complexity, extrapolation, interpretation, access, and relevance.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"33 ","pages":"Article 101189"},"PeriodicalIF":12.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135902862400055X/pdfft?md5=daf1f5860dd3d81b7ae5c13746fc62e9&pid=1-s2.0-S135902862400055X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135902862400055X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The number of studies that apply machine learning (ML) to materials science has been growing at a rate of approximately 1.67 times per year over the past decade. In this review, I examine this growth in various contexts. First, I present an analysis of the most commonly used tools (software, databases, materials science methods, and ML methods) used within papers that apply ML to materials science. The analysis demonstrates that despite the growth of deep learning techniques, the use of classical machine learning is still dominant as a whole. It also demonstrates how new research can effectively build upon past research, particular in the domain of ML models trained on density functional theory calculation data. Next, I present the progression of best scores as a function of time on the matbench materials science benchmark for formation enthalpy prediction. In particular, a dramatic improvement of 7 times reduction in error is obtained when progressing from feature-based methods that use conventional ML (random forest, support vector regression, etc.) to the use of graph neural network techniques. Finally, I provide views on future challenges and opportunities, focusing on data size and complexity, extrapolation, interpretation, access, and relevance.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field