Effects of prediction errors on CO2 emissions in residential smart energy management systems with hybrid thermal-electric storage

Aleksandr Zaitcev , Alexander Alexandrovich Shukhobodskiy , Tatiana Pogarskaia , Giuseppe Colantuono
{"title":"Effects of prediction errors on CO2 emissions in residential smart energy management systems with hybrid thermal-electric storage","authors":"Aleksandr Zaitcev ,&nbsp;Alexander Alexandrovich Shukhobodskiy ,&nbsp;Tatiana Pogarskaia ,&nbsp;Giuseppe Colantuono","doi":"10.1016/j.cles.2024.100138","DOIUrl":null,"url":null,"abstract":"<div><p>Modern residential smart energy management systems allow for more efficient use of renewable energy through the application of various data-driven control strategies. Such strategies typically rely on predicting renewable power generation, domestic power demand, energy price and grid CO2 index. While the generation of such forecasts is well-researched, the impact of the associated prediction errors remains understudied.</p><p>This manuscript presents a generalised study of the effect of forecast errors on smart energy system performance. Results are obtained using multiple control optimisation techniques and real life data from residential dwellings spanning over multiple seasons.</p><p>Our analysis reveals that ideal forecasts can achieve up to 71.3% CO2 emissions savings compared to a baseline house without a smart energy system. The most significant performance decrease was caused by time lags in all three forecasts (grid CO2 index, solar power generation, and power demand). Among these, the CO2 index forecast was the most sensitive to errors, with an average performance deterioration of approximately 5% per 30 min of time lag. In contrast, errors in solar power generation and power demand forecasts had less impact, causing performance decreases of 18% and 21%, respectively, for extreme changes in forecast profile scale. This research identifies critical points in smart energy system design and offers insights to prioritise improvements in forecast models.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772783124000323/pdfft?md5=10dd73766e68ab2d46b17caff6449113&pid=1-s2.0-S2772783124000323-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern residential smart energy management systems allow for more efficient use of renewable energy through the application of various data-driven control strategies. Such strategies typically rely on predicting renewable power generation, domestic power demand, energy price and grid CO2 index. While the generation of such forecasts is well-researched, the impact of the associated prediction errors remains understudied.

This manuscript presents a generalised study of the effect of forecast errors on smart energy system performance. Results are obtained using multiple control optimisation techniques and real life data from residential dwellings spanning over multiple seasons.

Our analysis reveals that ideal forecasts can achieve up to 71.3% CO2 emissions savings compared to a baseline house without a smart energy system. The most significant performance decrease was caused by time lags in all three forecasts (grid CO2 index, solar power generation, and power demand). Among these, the CO2 index forecast was the most sensitive to errors, with an average performance deterioration of approximately 5% per 30 min of time lag. In contrast, errors in solar power generation and power demand forecasts had less impact, causing performance decreases of 18% and 21%, respectively, for extreme changes in forecast profile scale. This research identifies critical points in smart energy system design and offers insights to prioritise improvements in forecast models.

Abstract Image

预测误差对热电混合蓄能住宅智能能源管理系统二氧化碳排放的影响
现代住宅智能能源管理系统可通过应用各种数据驱动控制策略,更有效地利用可再生能源。这些策略通常依赖于对可再生能源发电量、国内电力需求、能源价格和电网二氧化碳指数的预测。虽然对此类预测的生成进行了深入研究,但相关预测误差的影响仍未得到充分研究。本手稿对预测误差对智能能源系统性能的影响进行了概括性研究。我们的分析表明,与未安装智能能源系统的基线房屋相比,理想的预测最多可减少 71.3% 的二氧化碳排放量。在所有三种预测(电网二氧化碳指数、太阳能发电量和电力需求)中,性能下降最明显的原因是时间滞后。其中,二氧化碳指数预测对误差最为敏感,平均每 30 分钟的时滞会导致性能下降约 5%。相比之下,太阳能发电量和电力需求预测误差的影响较小,在预测轮廓尺度发生极端变化时,性能分别下降 18% 和 21%。这项研究确定了智能能源系统设计的关键点,为优先改进预测模型提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信